Clinical Anatomy and Imaging of the Spine

John A. Carrino, M.D., M.P.H.
Vice Chairman

Department of Radiology and Imaging, Hospital for Special Surgery
Professor of Radiology, Weill Cornell Medical College 535 East 70th Street

3E-012
New York, NY 10021
Email: CarrinoJ @HSS.EDU

Spinal Column

Anatomy

- Series of vertebrae, ligaments, and articulations
Function
- Flexible support structure for thorax, abdomen, and cranium
- Protection for cord and nerve roots

Contents

Bones
Joints
Ligaments
Muscles/tendons
Spinal Canal: Epidural/Intradural
Neural Canals/Neuroforamina
Neural Elements
Vascular Anatomy

Imaging techniques

- Radiography
- Myelography
- CT
- MRI

Radiography

- Bony (osseous) structures
- Soft tissue
- Used to assess:
- Alignment
- Morphology
- Osseous destruction

Myelography - Rad Fluoro

- Central canal, neural foramen, nerve roots, caliber of cord.
- Used for:
- Canal narrowing.
- Foraminal narrowing.
- Nerve root pathology (mass, arachnoiditis)

Myelography - CT

- Bony structures, like CT
- Implants/Hardware
- Central canal, neural foramen, nerve roots, caliber of cord
- Used for:
- Canal narrowing
- Foraminal narrowing
- Intradural lesion if MRI contra-indicated

- Bony structures, including neural foramen, central canal
- Soft tissue
- Disc
- Thecal sac (limited)
- Used to assess:
- Fracture
- Malalignment
- Some soft tissue abnormalities

- Soft tissues - spinal cord, nerve roots, paraspinal soft tissue
- Bone - for marrow abnormalities
- Used to assess:
- Degenerative changes
- Trauma
- Infection
- Neoplasm

MR imaging primer

T1 WI

- fluid dark
- fat bright unless fat sat (used with contrast)
T2 WI
- fluid bright
- fat bright unless fat sat (looks similar to STIR)

STIR

- fluid sensitive (bright) \& rest dark
PD : high SNR
- Fluid somewhat bright
- fat bright unless fat sat

PD-TSE (Intermediate Weighted)

PD : high SNR
Fluid somewhat bright fat bright unless fat sat

T1-WI

Signal Intensity

- Muscle \rightarrow gray/intermediate all PS
- Fat \rightarrow bright T1
- Water \rightarrow dark T1, bright T2
- Cortex/Tendon/Lig \rightarrow dark all PS

Contents

Bones
Joints
Ligaments
Muscles/tendons
Spinal Canal: Epidural/Intradural
Neural Canals/Neuroforamina
Neural Elements
Vascular Anatomy

Occiput (C0), Atlas (C1), Axis (C2)

- Occipital condyles
- Atlas
-Lateral masses
-Stabilizing ligaments
-Rotational motion
-Axis
-Dens
-Body
- Articular pillars

Skull Base

-Chamberlain's Line: Posterior hard palate to opisthion Tip of dens is at or below this line
-Wackenhein Clivus Base Line: Posterior margin of dens is tangent to, but not above this line Smoker Radiographics 1994

Atlanto-Occipital Assimilation

Failure of Segmentation b/w Skull and C1

- Typically Associated with Basilar Invagination

Characteristic commashaped appearance of basion

Atlas

-lacks a body
$\bullet t w o ~ l a t e r a l ~ m a s s e s ~$ -short anterior arch -longer posterior arch
-Grooves for vertebral Artery
-Foramen
transversarium in
 transverse process

RadioGraphics

RadioGraphics

Incomplete Fusion CA Posterior Arch

Incomplete Fusion Posterior Arch C1

Axis

-Dens axis
-Attachments of alar ligaments

- Groove for transverse ligament
-Facet for anterior arch of atlas
-Foramen
transversarium in transverse process

Henry Gray (1821-1865).

th

RadioGraphics

C1 Occipitilization

Atlas (C1), Axis (C2)

Vertebral body anatomy: CT

- Atlas and axis (C1 and C2)
- Unique vertebral bodies
- C1 has no spinous process or body
- C2 has a superior extension called the dens, or odontoid

Vertebral body anatomy: CT

- Coronal: Axis and Atlas
- Occipital condyle
- Atlanto-occipital joint
- C1 lateral mass
- C1 transverse process
- Dens/odontoid
- Atlanto-axial joint
- C2 vertebral body
- Neural foramen

Vertebral body anatomy: CT

- Axial: Axis and Atlas
- Atlantooccipital joint
- Occipital condyle
- C1
- Anterior arch
- Lateral mass
- Transverse process
- Transverse foramen
- Posterior arch
- C2
- Dens/odontoid
- Body
- Pedicle, lamina, spinous process

Os Odontoideum

Anterior Arch Hyperplasia allows for
Differentiation from
Type II Odontoid
Fracture

Associations:

- Down Syndrome, SED, Morquio's, Klippel-Feil

Normal Variant: Os odontodium with pseudarthrosis and DJD

Chondrification centers

Ossification centers

Primary ossification centers

Ossification of a vertebra
By 3 primary centers

1 for each vertebral arch (7th or 8 th week)

Secondary ossification centers

Longitudinal growth

Sub -Axial Spine

Cervical Vertebrae (C3-7)

-Small but relatively broad bodies

- Large triangular vertebral foramen
-Raised lip on upper surface of body
-Ant. and post. tubercle of transverse process
-Foramen transversarium (C7 no vertebral artery !)
-Short bifid spinous processes

Vertebral body anatomy: Radiography

- Lateral:
- Atlas
- Axis (dens)
- Vertebral bodies (Cervical)
- Vertebral bodies
(Thoracic)
- Disc spaces
- Facet joints
- Spinous processes
- Transverse process

Cervical Vertebrae (C3-7)

Uncinate process

- Osseous projection off of the superolateral aspect of the vertebral body
- Articulates with beveled inferolateral aspect of the supradjacent vertebral body to form the uncovertebral joint
Uncovertebral joint(Joint of Luschka)
- Unique to the cervical spine
- Part of the disc, not a synovial joint
- Frequent location of degeneration

Sub-Axial Cervical

Spine:

 Uncinate Processess

Developmental Variants: C-spine

Subdental synchondrosis
Accessory ossicle of C1 arch

- Ununited C1 apophysis

Incomplete fusion C1 arch

- anterior
- posterior

Occipitalization of C1 (Cervical occipital fusion)

- C1 lateral masses fuse with occipital condyles

Congenital block vertebrae
Bifid spinous process

Congenital Block

 Vertebrae

Bfitid Spinous Process

Congenital Pedicle Absence

Lumbar Vertebrae

- Large bodies
- Most often triangular foramen
-Transverse processes thin and long
-Superior articular facets often concave
- Inferior articular facets often convex
-5th. lumbar vertebra has largest body which is markedly deeper in front

Vertebral body anatomy: Radiography

- AP:
- Pedicles
- Spinous process
- Transverse processes
- Vertebral body
- Disc space

Vertebral body anatomy: CT

- Axial (thoracic spine)
- Vertebral body components:
- Body
- Pedicles
- Transverse processes
- Laminae
- Spinous process
- Facet joints
- Central canal
- Neural foramen

Vertebral body anatomy: CT

- Sagittal (t and I spine)
- Vertebral components
- Bodies
- Thoracic (T12)
- Lumbar (L1-L5)
- Sacrum
- Discs
- Spinous process
- Facet joint
- Central canal
- Neural foramen

Vertebral body anatomy: CT

- Coronal (t and I spine)
- Vertebral components
- Thoracic
- Body, disc
- Costovertebral joint
- Costotransverse joint
- Lumbar
- Superior and Inferior articular facets
- Facet joint
- Pedicles
- Spinous processes
- Sacrum, llium, SI joint

Ring Apophyses: MRI

-Need MRI

Limbus Vertebra

Limbus vertebrae

MARROW: Normal MR Imaging

- Red (Hematopoietic)
- T1 = muscle (except in neonates)
- T2 > muscle \& <fat
- Yellow (Fatty)
- short T1 \& long T2
- isointense to sub-Q fat (< T2)
FAT H2O PROTEIN

Red(Hematopoietic) 40\% 40\% 20\%
Yellow(Fatty) 80\% 15\% 5\%

路

Lurribar Spi "Scotty Dog
 Lurribar Spi "Scotty Dog

\qquad

PEDICLE \rightarrow

Lumber Spi Angtorny

Sacrum

-block of bone at base of vertebral column -Support spine \rightarrow transmit load

- Triangular shape (broad cephalad $\boldsymbol{>}$ tapers)
-Foramina (anterior and posterior)

Sacrum

- Fusion of S1-5, the largest vertebral element

Coccyx

- Fusion of four rudimentary vertebrae

Sacrum

Largest vertebral element (5 fused vertebrae)
Sacral Alae (SA)
Lateral Mass (LM)
Sacral Hiatus (SH)
Where spine meets the pelvis (SI Joint)
"Holy bone" (hieron osteon)

Sacrum

"Holy bone"

- hieron osteon
-Largest vertebral element (5 fused vertebrae)
-Sacral Alae (SA)
-Lateral Mass (LM)
-Sacral Hiatus (SH)
-Where spine meets
the pelvis (SI Joint)

Vertebral Enumeration

Background

There is relative paucity of information about the frequency and spectrum of vertebral level variants in the current published literature

Variant spinal segment anatomy has several important clinical implications

- Accurate localization of vertebral segments is essential prior to surgery or intervention
- Important for communication between health providers
- Variant anatomy may explain clinical symptoms

Thoracolumbar Spine Variability

1. Non-typical distribution of segments (homeotic variations)
2. Anomalous total number of vertebrae (meristic variations)
3. Transitional Situation

$$
\begin{array}{ll}
\text { - } & \text { ThoracoLumbar Transitional Vertebrae (TLTV) } \\
\text { - } & \text { LumboSacral transitional vertebrae (LSTV) }
\end{array}
$$

Transitional Situations

A transitional vertebra retains partial features of the segment above and the segment below

Spinal Column

C-spine shows morphological stasis ($\mathrm{n}=7$)
T and L spine are variable
Total number of vertebrae above the sacrum (presacral)
-23
-24
-25
Kier EL. Some Developmental and Evolutionary Aspects of the Lumbosacral Spine. In Brain Anatomy and Magnetic Resonance Imaging; Gouaze A, Salamon G, eds. Springer-Verlag: Berlin Heidelberg, 1988.

--Midline automated spine survey iterative scan technique (ASSIST) localizer images show variant vertebral anatomy

AJR

Results

Subjects- 300

- 171 males, 129 females
- Age mean - 30 years
- Age range - 18-45 years

Total presacral* segment distributions-
。 23 in 2.3\% (7/300)

- 24 in 91.7\% (275/300)

。25 in 6\% (18/300)
*Presacral = total number of vertebral segments above the sacrum

Results

Segmental vertebral distributions-

- C7/T12/L4 = 0.3\% (1/300)
- C7/T12/L5 = 89.7\% (269/300)
- C7/T12/L6 = 3.7\% (11/300)
- C7/T13/L4 $=2.3 \% ~(7 / 300)$
- C7/T11/L5 = 0.3\% (1/300)
- C7/T11/L6 =0.7\% (2/300)
- C7/T13/L5 = 2.7\% (8/300)
- C7/T13/L6 = 0.3\% (1/300)

Virgules (I, slashes) denote different segments

Cervical Rib

Criteria to identify the presence of a cervical rib:
。 The rib must abut the $7^{\text {th }}$ cervical vertebral transverse process

- The rib must have no connection with the manubrium sterni, although it may form a synostosis with the $1^{\text {st }}$ rib
- The cervical rib must be separate from, but articulate with the transverse process of C7

Brewin J, Hill M, Ellis H. The prevalence of cervical ribs in a London population. Clin Anat. 2009 Apr;22(3):331-6.

Cervical Rib

Figure : Coronal CT image of cervical spine shows a cervical rib on the right side

Figure: Axial CT image of cervical spine shows a cervical rib on the right, articulating with the transverse process of C7

Cervical Rih Variant

Thoracolumbar Transitional Vertebra

- Anomalous lowest rib bearing segment
- Consists of a diminutive or short rib on at least one or both side
- Short rib was defined as a rib with length of 38 mm or less

Wigh RE. The thoracolumbar and Iumbosacral transitional junctions. Spine (Phila Pa 1976). 1980 May-Jun;5(3):215-222.

Thoraco-lumbar junction

Thoracolumbar Transitional

 vertebra

Axial (a), oblique sagittal (b), 3D (c) CT images of thoracolumbar junction shows a transitional verterbra with short ribs on both sides

Thoraco-lumbar junction

LumboSacral Transitional Vertebra (LSTV)

Presence of an enlarged transverse process on one or both sides of the last lumbar vertebra

Classified as per Castellvi's classification (Castellvi et al, 1985)

LSTV - Dermatomes

Patients with LSTV have dermatomal variation and alteration in function of the lumbosacral nerve roots, which manifests as poor correlation with clinical symptoms and may result in wrong level of percutaneous injection procedures

Seyfert S. Dermatome variations in patients with transitional vertebrae. J Neurol Neurosurg
Psychiatry. 1997 Dec;63(6):801-803.
Kim YH, Lee PB, Lee CJ, Lee SC, Kim YC, Huh J. Dermatome variation of lumbosacral nerve roots in patients with transitional lumbosacral vertebrae. Anesth Analg. 2008 Apr; 106(4):12791283.

Castellvi Classification of LSTV

Type I	Dysplastic transverse process	Unilateral (a) or bilateral (b) large triangular transverse process, at least 19 mm wide
Type II	Incomplete lumbarisation / sacralisation	Enlarged transverse process with unilateral (a) or bilateral (b) pseudarthrosis with the adjacent sacral ala
Type III	Complete lumbarisation / sacralisation	Enlarged transverse process, with unilateral (a) or bilateral (b) com- plete fusion with the adjacent sacral ala
Type IV	Mixed	Type IIa on one side and type IIIa on the other

Lumbosacral Transitional Vertebra- Classification

Type I- Dysplatic transverse perocess:

- Large transverse process triangular in shape measuring at least 19 mm in width
。Type Ia- Unilateral; Type Ib- Bilateral

Castellvi Classification of LSTV

Lumbosacral Transitional Vertebra- Tvns la

Figure- Oblique coronal CT image of lumbosacral junction shows a transitional verterbra with enlarged tranverse process on the right side

Lumbosacral Transitional Vertebra- Tvne Ih

Figure - Coronal CT image of lumbosacral junction shows a

Lumbosacral Transitional Vertebra- Classification

Type II- Incomplete /umbarization/sacralization

- Large transverse process appears to follow the contour of the sacral ala
- Appears like a diarthrodial joint between the transverse process and the sacrum
- Type IIa- Unilateral; Type IIb- Bilateral

Castellvi Classification of LSTV

Typella

Lumbosacral Transitional Vertebra- Tvns Ila

Figure - Coronal CT image of lumbosacral junction shows a transitional verterbra with diarthrodial joint appearance on the right side.

Type IIb

Figure - Coronal CT image of lumbosacral junction shows a transitional verterbra with diarthrodial joint appearance on both sides.

PELviswiontrass. C

Lumbosacral Transitional Vertebra- Classification

Type III- Complete Iumbarization/
sacralization

- Similar to Type II
- Instead of diarthrodial joint, there is osseous fusion between the transverse process and the sacrum
- Type IIIa- Unilateral; Type IIIb- Bilateral

Castellvi Classification of LSTV

III A

III B

Lumbosacral Transitional Vertebra- Tvne IIIa

Figure - Coronal CT image of lumbosacral junction shows a transitional verterbra with fusion on left side

Lumbosacral Transitional Vertebra- Tvne Illh

Figure - Coronal CT image of lumbosacral junction shows a
transitional verterbra with fuSion on both sides

Lumbosacral Transitional Vertebra- Classification

Type IV- Mixed

- Type II on one side and Type III on the other.

Castellvi Classification of LSTV

Lumbosacral Transitional Vertebra- Tvns IV

Figure - Coronal CT image of lumbosacral junction shows a
transitional verterbra with fuSiOn on left and a
diarthrodial looking joint on the right side

Transitional Segments Bertolotti's Syndrome

Transitional segment

Bertolotti's Syndrome

Courtesy of Tim Maus, M.D.

Bertolotti's Syndrome

Courtesy of Tim Maus, M.D.

Bertolotti's Svndrome

-

Bertolotti's Svndrome

Bertolotti's Syndrom

Courtesy of Tim Maus, M.D.

Berolotti's Svndrome

L

Bertolotti's Syndrome

Courtesy of Tim Maus, M.D.

Bertolotti's Syndrome

Courtesy of Tim Maus, M.D.

Type of Transitional Verterba

Pain Physician, 2006;9:53:56, 15SN 1533•3159

Results

TYPE	Percentage	Number
Type Ia	4.3	$13 / 300$
Type Ib	2.3	$7 / 300$
Type IIa	6	$18 / 300$
Type IIb	9.7	$29 / 300$
Type IIIa	1	$3 / 300$
Type IIIb	4	$12 / 300$
Type IV	2	$6 / 300$
	Total $n=$	$88 / 300$

LSTV Identification on MRI

features described for identifying LSTV on lateral projection/sagittal imaging

- "squared" appearance vertebral body morphology
- decreased intervertebral disc height at the lumbosacral junction
- S1-2 intervertebral disc morphology

Wigh RE. The thoracolumbar and lumbosacral transitional junctions. Spine (Phila Pa 1976). 1980 May-Jun;5(3):215-222.

Nicholson AA, Roberts GM, Williams LA. The measured height of the lumbosacral disc in patients with and without transitional vertebrae. Br J Radiol 1988;61: 454-455.

O'Driscoll CM, Irwin A, Saifuddin A. Variations in morphology of the lumbosacral junction on sagittal MRI: correlation with plain radiography. Skeletal Radiol 1996;25: 225-230.

dentification of LSTV by IVD morphology

O'Driscoll Type 1

- No disc material between S1 \& remainder of sacrum (non-LSTV)

O'Driscoll Type 2

- Small residual disc between S1 and remainder of sacrum, AP diameter of disc being less than AP diameter of sacrum

O'Driscoll Type 3

- Well-formed residual disc between S1 \& remainder of sacrum, AP diameter of disc equaling the AP diameter of sacrum

O'Driscoll Type 4

- Well-formed residual disc with abnormal "squaring" of presumed upper sacral segment on lateral view

O'Driscoll Classification of first sacral IVD (S1-2)

Type I

Type 2

Type 3

Type 4

Type 1

Type 2

Type 3

Type 4

LSTV and vertebral

Nunghbering Antion systems for LSTV do $^{\text {and }}$ not provide insight into accurate labeling information for the vertebral level

If a LSTV is present, this should be stated along with its characterization including where the lowest, well-formed intervertebral disc is. This landmark can be identified at fluoroscopy during surgical or percutaneous procedures

Reported Landmarks for Vertebral Labeling from L-spine

Spinal cord

- conus medullaris

Lee CH, Seo BK, Choi YC, Shin HJ, Park JH, Jeon HJ, Kim KA, Park CM, Kim BH. Using MRI to evaluate anatomic significance of aortic bifurcation, right renal artery, and conus medullaris when locating lumbar vertebral segments. AJR Am J Roentgenol. 2004 May;182(5):1295-1300.

Musculoskeletal

- iliolumbar ligament Hughes RJ, Satretertar). Numbering of lumbosacral transitional vertebrae on MRI: role of the iliolumbar ligaments. AJR 2006;187(1):W59-65.

Vascular

- aortic bifurcation
- right renal artery
- inferior vena cava confluence
- celiac trunk
- superior mesenteric

Chithriki M, Jaguterrstequoot The anatomical relationship of the aortic bifurcation to the lumbar vertebrae: a MRI study. Surg Radiol Anat. 2002 Dec;24(5):308-312.

Lee CH, Park CM, Kim KA, Hong SJ, Seol HY, Kim BH, Kim JH. Identification and prediction of transitional vertebrae on imaging studies: anatomical significance of paraspinal structures. Clin Anat. 2007 Nov;20(8):905-14.

Reported Landmarks for Vertebral Labeling from L-spine

 MRI
Spinal cord

Vascular

confounded by the
 \&
 assumption of 12
 thoracic vertebrae

Hughes RJ, S(H) Aedmy). Numbering of lumbosacral transitional vertebrae on MRI: role of the iliolumbar ligaments. AJR 2006;187(1):W59-65.

Radiol Anat. 2002 Dec;24(5):308-312.
Lee CH, Park CM, Kim KA, Hong SJ, Seol HY, Kim BH, Kim JH. Identification and prediction of transitional vertebrae on imaging studies: anatomical significance of paraspinal structures. Clin Anat. 2007 Nov;20(8):905-14.

Clinical Relevance

Substantial variability of spine segmental anatomy may confound spine imaging interpretation
Hindrance in ascribing correct vertebral levels
Deviation from the typical total and segmental distribution is not infrequent and transitional situations are common
Knowing the prevalence will provide better insight to clinicians

Courtesy of Tim Maus, M.D.

71 M Right leg pain

Courtesy of Tim Maus, M.D.

Courtesy of Tim Maus, M.D.
 71 M Right leg pain

12 Thoracic rib-bearing vertebrae, 5 lumbar vertebrae above a transitional segment The $25^{\text {th }}$ segmental nerve, classically supplying the S1 radicular distribution, exits under the transitional segment pedicle

A safe triangle supra-neural TFE was performed, targeting the nerve exiting under the transitional segment pedicle, which is compressed in the lateral recess - he left the department pain free

Courtesy of Tim Maus, M.D
 43 F, left leg pain

$43 F$, leftleg pain

-
-

Coner 27 Mr , Left Leg Pain

27 M, Left Leg Pain

Courtesy of Tim Maus, M.D.

-

37, M S1 Radicular Pai

37, Male
Left buttock, posterior thigh, posterior calf pain
Paresthesias on planter aspect of foot
Contrary to imaging recommendations, plain films were not obtained MRI shows?
How can this be resolved with the patient's pain pattern?
Where should an injection be performed ?

MRI scout view:

- 25 vertebral segments

Fluoro observation:

- 7 cervical
- 12 rib bearing thoracic
- 6 lumbar

Courtesy of Tim Maus, M.D.

37. M S1 Radicular Pain

${ }^{6} 65$,' F"Right Leg Pain

6 lumbar vertebrae

Courtesy of Tim Maus, M.D.
 65, F Right Leg Pain

Courtesy of Tim Maus, M.D.
65, F Right Leg Pain

Courtesy of Tim Maus, M.D.

71, F Right Hip Pain

-
-
-
-
-

Courtesy of Tim Maus, M.D.

Right Hip Pain

Schemes of Numbering Lumbar Vertebrae

Count from top using whole spine localizer

Use lumbosacral angle to discern transition point

Identify iliolumbar ligament arising from last lumbar vertebrae

IlioLumbar Ligament (ILL)

Summary

Because of phylogenetic variation the ILL does not always denote the level of L5 but rather simply identifies the lowest lumbar type vertebral segment.
LSTV are associated with anomalous number of presacral segments but TLTV are not The presence of a TLTV is associated with a higher incidence of concomitant LSTV, and vice yersa

Numbering Vertebral Levels Using Lumbar MRI. Radiology 2011.

Contents

Bones
Joints
Ligaments
Muscles/tendons
Spinal Canal: Epidural/Intradural
Neural Canals/Neuroforamina
Neural Elements
Vascular Anatomy

Joints of upper C-spine

Atlanto-occipital joint: occipital condyles and lateral atlantal mass.
Lateral atlanto-axial joint (lateral masses of atlas and sup. articular surface of axis)
Median atlanto-axial joint (dens and anterior arch of atlas and transv. ligament.

JoInts of

Upper Cervical Spine

-Atlanto-occipital joint: occipital condyles and lateral atlantal mass. -Lateral atlanto-axial joint: lateral mass, atlas and articular pillar, axis - Median atlanto-axial joint: dens and anterior arch of atlas, transverse ligament.

JoInts ot upper Cervical Spine

Lateral view upper cervical spine

"Open mouth" Odontoid view

Roche CJ, King SJ, Dangerfield PH, Carty HM. The atlanto-axial joint: physiological range of rotation on MRI and CT. Clin Radiol. 2002 Feb;57(2):103-8.

C1-C2 Injection

Spinal Organization: Subaxial

C2 to sacrum: organized in a similar pattern with three types of joints

1. Intervertebral discs (fibrocartilaginous symphyses) between vertebrae
2. Facet jt (zygapophysial $j t$) between sup and inf articular processes, a synovial joint
3. Fibrous joints include ligamentum flava, interspinous ligaments, and supraspinous ligaments

Systematic Nomenclature

"DISC"

"FACET"

Anterior
intervertebral joint
Intervertebral
amphiarthroses
(intervertebral symphyses)
Inter-body joint

Posterior
intervertebral joint
Intervertebral diarthroses

Zygoapohysial joints

Intervertebral Discs

Found from the axis to the sacrum

- Different characteristics

Immensely strong fibrocartilaginous structures which are strongest bonds between adjacent vertebrae.
Outer anulus fibrosis and inner nucleus pulposus
Concentric lamellae

INTERVERTEBRAL DISC

Anterior or posterior longitudinal ligaments
Periosteofascial tissue
Intrinsic fibers of the anulus fibrosis
Deep core of

fibrocartilagnous
material Mercer S. The Ligaments and Anulus Fibrosis of Human Adult Cervical Intervertebral Discs. Spine 1999;24:619.

Cervical Intervertebral Discs

Anulus fibrosus is much thicker anteriorly with crescentic mass of collagen (No ring of fibers surrounding the nucleus pulposus)
Anulus fibrosus essentially deficient posterolaterally Mercer S. The Ligaments and Anulus Fibrosis of Human Adult Cervical Intervertebral Discs. Spine 1999;24:619.

C-spine Biomechanics

C-spine discography: approach

Simplified approach to discography: Two triangles and a box

Sub-Axial Cervical Spine: Uncinate Processess

Intervertebral Discs

Normal discs are hyperintense on T2
(predominately the nucleus pulposus)
With advancing age the water content of
the nucleus pulposus decreases, manifested as decreased T2 signal in the disc

Lumbar Intervertebral Disc: component structures

Nucleus Pulposus
Anulus Fibrosus
Cartilagenous Endplate

Lumbar intervertebral Discs

Disc height gradually increases inferiorly except at L5-S1
Posterior margin concave in upper lumbosacral spine
Post. margin straight or convex at L4-5 and L5-S1
Post. margin projects no more than 1 mm beyond end plate

Intervertebral Discs: clefts

T1-WI CSE

T2-WI FSE

Normal Variant: Schmorls Node

Facet Joints

articulation of the inferior articular process of the posterior elements of a vertebra with the superior articular process of the posterior elements of the next vertebra synovial type joint

- capsule,
- synovium
- reciprocating surfaces lined by hyaline (articular) cartilage
- menisci

Facet Joints

Zygapophysial joint (z-joint)

- more appropriate term
- "facet" actually only represents the articular cartilage surface of the joint

Z-Joint Anatomy: Orientation

Oriented differently throughout spine due to varying biomechanical stress

Lumbar \rightarrow Sagittal/Oblique

Cervical \rightarrow Transverse/Oblique Thoracic \rightarrow Coronal
 Lumbar \rightarrow Sagittal/Oblique

Cervical Z-joints

Cervical Zygapophyseal Joints

SAP: anterior, black IAP: posterior, red Joint space: yellow Plane of axial section: blue

Lumbar Z-joints

Z-Joint Tropism

Sacroiliac Joint

Small range of motion

No muscle that execute active movements
Passive movements
"Stress relieving"

SI Joint:
 Biomechanics

Axes of movement passes obliquely across pelvis
Flexion: axis passes backwards from pubic symphysis to sciatic notch
Extension: axis passes from pubic symphysis through pelvis between ischium and coccyx
complex movements

SI Joint: MR

SI Joint: MR

SI Joint: Age Changes

Embryo: strip of mesenchyme \rightarrow cavitation 1st decade: joint enlarges but surface flat
2nd decade: corrugation of joint surfaces
5th and 6th decade: osteophytes
8th decade: large interdigitating osteophytes

Contents

Bones
Joints
Ligaments
Muscles/tendons
Spinal Canal: Epidural/Intradural Neural Canals/Neuroforamina Neural Elements
Vascular Anatomy

Ligamentous Structures of Skull Base

Fig. 2.65 Posteroanterior (A) and sagittal (B) illustrations showing the ligamentous structures of the skull base and cervical spine, including the alar ligament, cruciform ligament, and atlantooccipital ligaments.

Ligaments of upper C-spine

Membrana tectoria
Alar ligaments

Transverse
ligament
Apical ligament of dens

Transverse Ligament

Normal

Table 1

peoterence	Instrunent	Tot AR	R: AR	LIAR	Tot LB	Rt LB	HLB	Tot FE	Fax	Ext	Age Ranget	n
Active RoM studies												
Newellut	Vissual estimation	169	84	${ }^{85}$	107	54	53	145	73	3	[-18, 40]	4
Sharpetit		${ }^{99}$									ven	
Kaummat		138 140			71			${ }_{124}^{100}$			(125, 424	198
Bamotr ${ }^{\text { }}$		151	76	75							(18, 24)	
Buck	Two-arm goniometry	147	73	74							(18, 23]	100
Rosen ${ }^{\text {N/ }}$ t		140			133			76	${ }^{43}$	33	[20, cell	18
Guath ${ }^{2}$ dil		162	81	81							Dec 2	
Lind ${ }^{\text {a }}$ \%	Compass	142									(12.79]	
Yoodas":		${ }^{136}$	70	${ }_{66}$							Dec 3-5	
Bemetr ${ }^{\text {a }}$								148	54	93	[18, 24$]$,
Alaramitil		150	75	75	76	${ }^{38}$	${ }^{38}$	122			[135-54]	125
Busk' ${ }^{\text {a }}$								14.	87	n	[18.23]	100
		157	7	80	82	39	${ }^{43}$	121	60	61	[20, 40]	16
Kishtiman ${ }^{\text {ata }}$	Single incinocoetry	186	93	93	98	49	49	${ }_{160}^{134}$	69	7	Dec 3 Dec 3	
Mayer ${ }^{\text {ct }}$		134	88	${ }^{6}$.							YG	5
0 '0riscolis		433			194			116			Dee 3-5	6
Ordway ${ }^{\text {a }}$								127	${ }^{48}$	79	${ }^{30}$ [23, 49]	x
Rosen ${ }^{\text {asp }}$		166			108			150	69	${ }^{81}$	[20, 40]	
Youdas ${ }^{\text {r }}$ \%					85	4	41			75^{*}	Dec 3-5	125
Mayer ${ }^{\text {ct }}$ /4	Dual inclinomety				${ }^{85}$	4	${ }^{41}$	120	50	70	${ }^{\text {YG }}$	2
Ordway ${ }^{\text {a }}$								106	38	6^{65}	30 (22, 49)	
Trotrit Walmsley"	Electromsgatic	145 149	\%	89	8	44	${ }^{42}$	118	51	6	Dec 3-5 [18, 35]	120
Alundr),		${ }^{153}$			${ }^{91}$			140			${ }^{32}[24.58]$	10
Dvorak ${ }^{\text {b }}$	Posentiometry	175			91			141			[23, 35]	
Sandier ${ }^{\text {a }}$		179			${ }^{84}$			$\begin{aligned} & 139 \\ & 109 \end{aligned}$	46	63	${ }_{\text {Dee } 3}$	
Askn'is								113	50	63	$28[27.33]$	
Lind'?	Radiogrsply: Occiput to C7				122			128			[12.731	π
VanMamm								116			YG	
Sharpeens					\%			48	45	50	Not given	
Ortwar ${ }^{\text {\% }}$								107	35	7	30 [20.49]	2
Penning"ss					80			145				
Johnsan ${ }^{\text {a }}$	C0 to 11							137	99	68	$28[20.36]$	
Penning ${ }^{4} 55^{*}$	CT: $\mathrm{Co}-\mathrm{T1}$	${ }_{145} 98$	8	${ }_{74}^{49}$							${ }_{\text {2ec }}^{28} \mathbf{D i 2 7 , 4 0]}$	2
Passive RoM studes												
McClors ${ }^{\text {a }}$		143									${ }^{221} 123.351$	x
Nissan ${ }^{32}$ McClure ${ }^{4}$	Compass	189									Dee 3-5 7123 129	\cdots
Glamille ${ }^{\text {a }}$ \%	Single inclinomutry	192	97	95	128	61	65	${ }^{153}$	76	7	[20, 201	10
Nisson ${ }^{\text {N2 }}$					${ }^{10}$			120			Dec 3-5	-90
Dvorak ${ }^{1 / 3}$		575			96			165			Dect 3-5	100
McClure Sandier ${ }^{2}$	Potentiomesty	$\begin{aligned} & 155 \\ & 190 \end{aligned}$			102	39^{*}		141	60°		$\begin{gathered} 27[23,35] \\ {[27,32]} \end{gathered}$	
- One study did not measure Lt LB and Fbx halfocyles, thus, the half cycle values were axcluded from the descriptive statistics. t Mean andfor \|rangel. Range for decades is inclusive. When possibie, we selected data for all subpoputations whthin the age range of 20 to 50 years. * Total RoM values were derived by summing mean half cycle wabues. S. Radiographic measurements were summed trom segmental RoM values Data exdluded from Tabie 2 because the age range was beyond our critetion of 20 to 50 years or subsats of dato were not provided PFor latesal bending, $n=5$ -. The large discrepancy between total FE and the respective half-ycles is likely due to their measurement mathod. *T This study only measured AR to either the igight or left in each subiect. At $=$ right, $\mathrm{Lt}=$ left. $\mathrm{Fx}=$ figxion, $\mathrm{Ext}=$ extension; Tot $=$ total; $\mathrm{AR}=$ axial rotation, $\mathrm{LB}=$ lateral bending. $\mathrm{FE}=$ flewon-extension; $\mathrm{n}=$ number of subjects per study: $C O=$ occiput: $C T=0$ ornputerized tomography: $D e c=d e c a d e . Y G=y$ ounger group. Vore: For some studes, not al motions were investigated As a result. mary cells ace empty.												

Meta-Analysis of Normative Cervical Motion.

Chen, Jasper; Solinger, Alan; Poncet, Jacques; Lantz, Charles; DC, PhD

Spine. 24(15):1571, August 1, 1999.

Table 1. Active and Passive Normative Range of Motion ([degrees]) Using Subjects From a Limited Age Range of \f20 to \f50 Years Old* One study did not measure Lt LB and Flx half-cycles; thus, the half-cycle values were excluded from the descriptive statistics.+ Mean and/or [range]. Range for decades is inclusive. When possible, we selected data for all subpopulations within the age range of 20 to 50 years.++ Total RoM values were derived by summing mean half-cycle values.[S] Radiographic measurements were summed from segmental RoM values.[//] Data excluded from Table 2 because the age range was beyond our criterion of 20 to 50 years or subsets of data were not provided.[P] For lateral bending, $n=5$ \# The large discrepancy between total FE and the respective half-cycles is likely due to their measurement method.** This study only measured AR to either the right or left in each subject.Rt = right; $\mathrm{Lt}=$ left; FIx = flexion; Ext = extension; Tot = total; AR = axial rotation; LB = lateral bending; FE = flexion-extension; $\mathrm{n}=$ number of subjects per study; $\mathrm{CO}=$ occiput; $\mathrm{CT}=$ computerized tomography; Dec = decade; YG = younger group.Note: For some studies, not all motions were investigated. As a result, many cells are empty.

Table 2

Table 2. Overall Means $\left({ }^{\circ}\right)$ and Standard Deviations $\left(S^{\circ}\right)$ Derived From Table 1 and Organized by Technology

RoM Stuties	ns	Rotation			Lateral Bending			Flexion-Extension		
		Total	Fight	Left	Total	Right	Lef	Total	Fiexion	Extension
Active normative RoM studies										
Visual estimation	3	$149(17)$	84	85	85 (18)	54	53	$119(21)$	73	73
Two-arm goniometry	3	146 (6)	75 (2)	75 (1)	133			76	43	33
Compass	1	136	70	66						
Single inclinometry \dagger	9	171 (12)	86 (8)	86 (7)	93 (12)	44 (5)	44)(4)	138 (11)	61 (9)	77 (11)
Dual inclinometry	1				85	44	41	121	51	
Electromagnetic	3.	147 (3)	76	69	\% 6	44	42	112 (8)	45 (9)	68 (1)
Potentiometry	2	$17713)$			88151			140 (1)		
Radiography	8	122 (133)	60 (16)	62 (18)	80			121 (16)	50 (14)	67 (4)
Overall mean (SD) for technologies*	25)	151 (23)	73	71 (11)	2515)	44 (0)	4212)	126 (12)	52 (7)	71 (5)
Largest difference between technologiest		55	26	24	78	10	12	64	30	44
Passive normative RoM studies										
Compass	2	156 (18)								
Single inclinometry	2	192	97	95	118 (12)	61	65	137 (23)	76	n
Potentiometry	3	173(18)			$99(4)$			143 (3)		
Overall mean for technologies	6)	174 (18)			109 (13)			140 (4)		

- Visuat estimetion and two-arm gonsometry were excluded because of valdity issues. Inclusion of these technologes would give the following total, nightifexion and left/extension folM means and (standard deviations) for rotation: $150^{\circ}\left(19^{\circ}, 75^{\circ}\left(10^{\circ}\right), 74^{2}\left(10^{\circ}\right)\right.$, bateral bending $\left.93^{\circ}\left(18^{\circ}\right), 47^{\circ}\left(55^{\circ}\right), 45^{\circ} .15^{\circ}\right)$, an exion-extension: $119^{\circ}\left(21^{\circ}\right), 54^{*},\left(11^{\circ}\right), 65^{\circ}\left(16^{*}\right)$
t Data from O'Driscoll ot al ${ }^{50}$ was excluded because dota collection did not appear to isolate carvical spine motion. Overall singie inclinometry means for tota active RoM would be 163° for AR, 113° for LB, and 135° for FE, it itheir data were includied
* Standard deviation based on estimates of RoM within each catepory

3 Namber of studies reporting RoM by techinology
ITotal number of stubies from Table T to create Table 2; Some studies report on more than one technology so this number is less than the total of the number
a the column above.
RoM $=$ sange of motion

Meta-Analysis of Normative Cervical Motion.
Chen, Jasper; Solinger, Alan; Poncet, Jacques; Lantz, Charles; DC, PhD

Spine. 24(15):1571, August 1, 1999.

Table 2 . Overall Means ([degrees]) and Standard Deviations (SD[degrees]) Derived From Table 1 and Organized by Technology* Visual estimation and twoarm goniometry were excluded because of validity issues. Inclusion of these technologies would give the following total, right/flexion and left/extension RoM means and (standard deviations) for rotation: 150 [degrees] (19[degrees]), 75 [degrees] (10[degrees]), 74[degrees] (10[degrees]); lateral bending: 93[degrees] (18[degrees]), 47[degrees] (5[degrees]), 45[degrees] (5[degrees]); and flexion-extension: 119[degrees] (21[degrees]), 54[degrees], (11[degrees]), 65[degrees] (16[degrees]).+ Data from O'Driscoll et al 53 was excluded because data collection did not appear to isolate cervical spine motion. Overall single inclinometry means for total active RoM would be 163[degrees] for AR, 113 [degrees] for LB, and 135 [degrees] for FE, if their data were included.++ Standard deviation based on estimates of RoM within each category.[S] Number of studies reporting RoM by technology.[//] Total number of studies from Table 1 to create Table 2; Some studies report on more than one technology so this number is less than the total of the numbers in the column above. RoM = range of motion.

Ligaments of upper C-spine

Ligaments of Upper Cervical Spine

- Membrana tectoria
- Alar ligaments
-Transverse ligament
-Apical ligament of dens

Anterior Longitudinal Ligament

From ant. margin of foramen magnum to S1.
Strongly adherent to margins of vertebral bones and loosely attached to discs.
Deep fibers span one intervertebral articulation, superf. fibers span up to 4 articulations.
Narrow in C-spine and broad at L-spine.
Low signal on MRI blends with peripheral portion of annulus fibrosus and cortical bone.

Ant. longitud. Ligament

Posterior Longitudinal Ligament

In anterior portion of the vertebral canal
From the body of the axis to the sacrum
Attached to intervertebral discs and margins of adjacent vertebral bodies. No attachment at center of vertebral bodies (basivertebral vein!)
Superficial fibers bridge 3-4 bodies, deep fibers extend between adjacent vertebra.
Low signal on T1 and T2 weighted images.

Posterior longitudinal Ligament

igamenta flava

Connect laminae of adjacent vertebrae Blend with capsules of facet joints
Thickness: cervical (1.5mm), lumbar (46 mm).
Heterogeneous signal may be due to outpouchings of facet joint capsules (Radiology 177:415-420)
May calcify and lead to a bony spur in the neural foramen (Radiology 160:153-154) !

Ligamenta flava

Contents

Bones
Joints
Ligaments
Muscles/tendons
Spinal Canal: Epidural/Intradural
Neural Canals/Neuroforamina
Neural Elements
Vascular Anatomy

Paraspinal Muscles

Multifidus

L3 transpedicul ar

2003 Jul 31
Acq Tm: 18:46:08

: 3000.0 L
: 100.1
1 NAF

L3
subpedicula r

MRI Cervical Spine (T2*, GRE)

MRI Cervical Spine (FSE)

MRI Cervical Spine (FSE)

Contents

Bones
Joints
Ligaments
Muscles/tendons
Spinal Canal: Epidural/Intradural
Neural Canals/Neuroforamina
Neural Elements
Vascular Anatomy

Meninges/Spaces

- Meninges
- Dura - one layer, tubular prolongations through foramen
- Arachnoid - loosely attached to dura, although potential space (subdural) between them exists
- Pia - adherent to surface of cord
- Spaces
- Epidural: between dura and surrounding bony canal, contains fat, connective tissue, veins, lymphatics
- Subdural: potential space between dura and arachnoid iatrogenically demonstrated
- Subarachnoid: between arachnoid and pia, contains CSF, vessels, nerves fium terminale

Epidural Space

Between dura and bone
Contents: epidural fat, nerves, blood vessels, ligg. flava, post. long. ligament.
At L5/S1 level the dural sac enlarges and usually no epidural fat is seen at MRI.
Dura extends caudally to S2 and has lat. out-pouchings to nerve roots.

Cervical Epidural Space

Cervical epidural fat.

- Not much of it.
- Most constant is a posterior fat pad.
- Usually most prominent at C7/T1.

That's how I see it
Charles Aprill

Axial section through C5/6 disc / prepared by W

Axial CT section through C5/6 disc - post myel Ie subarachnoid and vascular enhancement.

SE T2 MRI - Axial section through C5/6 c

11

Epidural fat pad

SE T1 MRI - Mid line sagittal section

Epidural fat pad at C7/T1

Epidural Space

Central canal anatomy: MR Thecal sac

- Meninges
- Epidural space
- Fat, loose connective tissue, venous plexi
- (Subdural space)
- Subarachnoid space
- CSF, spinal arteries and veins
- Spinal cord
- Nerves, filum terminale

Central canal anatomy: MR Thecal sac

- Dura
- Dural nerve root sleeve
- Epidural space with fluid (abnormal)
- Subarachnoid space CSF (compressed)
- Spinal cord
- Nerve roots
- Ventral
- Dorsal
- Neural foramen

Central canal anatomy: CT Myelography - Thecal sac

- Epidural space
- Meninges
- Dura
- Arachnoid
- Pia
- (Subdural space)
- Subarachnoid space
- CSF
- Spinal cord

Intradural Space

Neural Foramina and Nerve Roots: Myelography

- AP
- Nerve roots (cauda equina in lumbar spine)
- Pedicles
- Disc spaces

Neural Foramina and Nerve Roots: Myelography

- Oblique
- Nerve roots
- Pedicles
- Neural foramen

MRI Myelography

Tarlov Cysts

LEVELS

In the caudocranial direction visualized on sagittal and coronal images, we have chosen the term levels.

In the axial image, the sagittal and parasagittal planes are called zones.

Contents

Bones
Joints
Ligaments
Muscles/tendons
Spinal Canal: Epidural/Intradural
Neural Canals/Neuroforamina
Neural Elements
Vascular Anatomy

Ebraheim: Neuroforamen

Anatomy of

 cervical
Neuroforamen

Sagittal Oblique

The shape of the intervertebral foramina approximated a funnel, the entrance zone being the most narrow part and the root sleeves conical, with their takeoff points from the central dural sac being the largest part.

Zones of the cervical neural canal

Neural Foramina and Nerve Roots: CT Myelography

Nerve root anatomy: CT Myelography

- Coronal (anterior)
- Ventral rootlets
- CSF
- Facet joints
- Atlas
- Axis w/dens

Nerve root anatomy: CT Myelography

- Coronal (mid/post)
- Spinal cord
- Dorsal rootlets
- CSF
- Facet joints
- Atlanto-occipital joint

Nerve root anatomy: CT Myelography

- Sagittal
- Spinal cord
- CSF
- Rootlets
- Neural foramen
- Nerve roots

Nerve root anatomy: MR

- Axial
- Spinal cord
- Dorsal roots
- Ventral roots
- Nerve root sleeve
- Neural foramen
- Dorsal root ganglion

Nerve root anatomy: MR

- Sagittal
- Rootlets
- Ventral, dorsal
- Roots
- Ventral, dorsal
- Dural sleeve
- Neural foramen
- DRG

Normal Anatomy: Rootlets,

 Roots- 1- Ventral rootlet
- 2- Dorsal rootlet
- 3- Rootlets (dorsal)
- (Aka filum pl. fila)
- 4- Root
- 5- Dorsal root ganglion
- 6-Spinal nerve

DRG, Nerve, Rami

- V- Vertebral artery

- 1-Dorsal root ganglion
- 2- Spinal nerve
- 3- Dorsal Ramus, proximal
- 4- Lateral Ramus, adjacent to facet
- 5- Ventral Ramus

Dermatomes (Nolte fig. 10-4)

Nolte: The Human Brain.
Copyright (c) 2009 by Mosby, an imprint of Elsevier, Inc. All rights reserved.

CERVICAL TRANSFORAMINAL ACCESS

Consecutive images through C4-5 foramen
Consider Carotid, Vertebral arteries, Brachial plexus, exiting root
Arterial contributors to Anterior Spinal Artery entering foramen from ascending or deep cervical cannot be imaged

RadioGraphics

Anatomy Neuroforamen

Neuroforamen (Neural Canal)

Borders

- Anterior: vertebral bodies and disc
- Posterior: facet joint and articular processes
- Superior and Inferior: pedicles

T1 sequence

- See low SI nerve passing below pedicle surrounded by high SI fat

Nerve Roots, Neural Foramen

- CT Myelogram, MRI
- Ventral and dorsal rootlets
- Ventral and dorsal roots as they enter the neural foramen

Contents

Bones
Joints
Ligaments
Muscles/tendons
Spinal Canal: Epidural/Intradural
Neural Canals/Neuroforamina
Neural Elements
Vascular Anatomy

Neural

 Structures8 cervical nerve roots exit above the similarly numbered vertebral body 12 thoracic and 5 lumbar nerve roots exit below the similarly numbered vertebrae
Nerve roots pass laterally out through NF
Dorsal root ganglion located within NF
Normal conus medullaris ends around the level of inferior endplate of L1 in adults

Central Canal Anatomy: MR
 Spinal Cord

- In cervical and thoracic spine
- Cord tapers to a diamond shaped point (conus medullaris)
- Conus typically ends between T12-L2
- Below this are the cauda equina ("horses tail" of lumbar, sacral, coccygeal nerve roots)
- Filum terminale - a strand of connective tissue extending inferiorly from the conus

Cross sectional spine anatomy

(Nolte Atlas Fig 02-01)

Central canal anatomy: MR Spinal Cord

- In contrast to brain, gray matter is inside while white matter is outside
- Gray matter is formed by columns ("horns") of cell bodies:
- Ventral horn - short, thick, multipolar motor neurons
- Dorsal horn - narrow, receives sensory axons from DRG

Central canal anatomy: MR Spinal Cord

- Three white matter columns (funiculi):
- Dorsal, ventral, lateral
- Descending motor, ascending sensory tracts mostly lateral, ventral funiculi
- Position, discriminative touch in dorsal funiculi

Spinal Cord

- CT myelogram, MRI
- Ends between T12 and L2, most commonly L1-L2
- Conus is distal-most aspect, diamond shaped, which is attached to lower dura via thin fibrous band (filum terminale)
- Cauda equina nerve roots below conus
- Gray matter, white matter
- CT Myelogram, MRI
- Ventral and dorsal rootlets
- Ventral and dorsal roots as they enter the neural foramen
- Artery of Adamkiewicz

Evaluation of the
 brachial plexus

OP-BRACREAE
 "97Brcs5. M. 44 V
$2 / 23 / 2010$
19.34:0238

SIMA 0 MP THN

3D DW PSIF

Fig. 2.-A, Photograph of dissected specimen shows right stellate ganglion in situ retracted anteriorly by a forceps. First rib has been transected and lateral portion removed. B, Drawing shows structures seen in A.

Stellate Ganglion

Bruzzi, J. F. et al. Radiographics 2008;28:551-560

Cervical Sympathetic Block Stellate Ganglion

Cervical Sympathetic Block Stellate Ganglion

Cervical Sympathetic

 Block

Medial Branch

 Localization
S.M. LORD Ph.D, 1996, University of Newcastle

Cervical
 Medial
 Branches

ALGOS

Medial Branch

 Localization

Centrode of articular pillar

Waist of articular pillar

Recession

T2-WI FSE

Central Canal Anatomy: MR Spinal Cord

- The conus most commonly terminates at or just above L1-2
- Below this are the cauda equina nerve roots

PITFALLS: CONJOINED NERVE ROOT SLEEVE

Innervation of Ventral Aspect Of Spinal Column

Courtesy of J. Randy Jinkins, MD

Somatic Innervation: Sinuvertebral Nerve of Luschka [Recurrent Meningeal Nerve]

Courtesy of J. Randy Jinkins, MD

Innervation of Dorsal Aspect Of Spinal Column: I

Courtesy of J. Randy Jinkins, MD

Innervation of Dorsal Aspect Of Spinal Column: II

Medial Branch:
Intrinsic Spinal Muscles: Interspinalis + Multifidus Ms.

Contents

Bones
Joints
Ligaments
Muscles/tendons
Spinal Canal: Epidural/Intradural
Neural Canals/Neuroforamina
Neural Elements
Vascular Anatomy

A. cervicalis profunda
A. cervicalis ascendens
A. vertebralis
A. subclavia

Aa. intercostales
posteriores

The Vert

-The paired vertebral arteries arise from the subclavian artery
-They ascend through the transverse processes of the upper 6 cervical vertebrae -Pass behind the lateral mass of C1 and enter the dura behind the occipital condyle

- Ascend through the foramen magnum and join to form the basilar artery

Vertebral Artery:

RadioGraphies

Cervical Vasculature

2D time-of-flight sequence

Vascular Supply to the Spinal Cord

Section courtesy of Adam Flanders, MD

Arterial Supply

Arterial supply to the spine through the radicular arteries
Not at all levels
Largest arises in the thoracic region- the artery of Adamkiewicz
(Nolte Fig 10-29)

Arterial Supply

- Anterior spinal artery and two posterior spinal arteries originate from vertebral arteries and supply the superior cord
- Spinal radicular arteries arise from vertebral, deep cervical, posterior intercostal, lumbar, and lateral sacral arteries
- Radicular arteries enter through neuroforamina and divide into anterior and posterior branches to supply vertebrae, meninges, and cord

Arterial supply

Sagittal contrast-enhanced MR angiographic images (T1-weighted gradient-echo sequence [5.9/1.9; flip angle, 30°]) obtained during two dynamic phases.

Nijenhuis R J et al. Radiology 2004;233:541-547

Arterial Supply

Spinal angiography

radicular artery

Spinal angiography

radicular artery
radiculomeningeal or radiculomedullary arteries

Vascular Anatomy of the Spinal Cord

Anterior Spinal Artery Posterior Spinal Arteries (ASA) $(P S A) \rightarrow$ paired

nomenclature

Segmental Artery

Anterior Spinal Artery

-Three major regions of supply to the ASA

- Cervicothoracic
- Mid-thoracic
- Thoraco-lumbar
-Borderzone (watershed) areas occur at the margins of each region.
-Adequate collateral flow is not always available across borderzone areas.
- Spinal cord is vulnerable to infarction in the event of systemic hypotension or compromise of a major radiculomedullary feeding vessel.

Fig. 8.
Courtesy of Philippe Gailloud, MD

Major Radiculomedullary Arteries

C3 - arises from vertebral artery.
C6 - (artery of cervical enlargement), arises from thyrocervical or costocervical trunk.
T4 or T5 - arises from intercostal artery.
T8 to conus - artery of lumbar enlargement (Adamkiewicz) aka. Arteria radicularis anterior magna.

- Arises from an intercostal or lumbar artery.
- "Hairpin-loop" configuration due to differential growth of spinal and spinal cord.

Contributors to Anterior Spinal Artery

Multiple vertebral contributors

Vertebral branch

Thyro-cervical trunk

functional adaptation

artery of the cervical enlargement
Courtesy of Philippe Gailloud, MD

Thyro-cervical trunk contributes to ASA via left C6 foramen

Coronal multiplanar reformations from contrast-enhanced T1-weighted gradient-echo MR
images (5.9/1.9; flip angle, 30°)

Nijenhuis R J et al. Radiology 2004;233:541-547

Yoshioka K et al. Radiographics 2006;26:S63-S73
RadioGraphics

RadioGraphics

functional adaptation

artery of the lumbar enlargement artery of Adamkiewicz

RadioGraphics

RadioGraphics

Arterv of Adamkiewicz

피 TH

functional adaptation

artery of the lumbar enlargement artery of Adamkiewicz

Courtesy of Philippe Gailloud, MD

Spinal Arteries

Courtesy of Philippe Gailloud, MD

Posterior Spinal Arteries

- Smaller and more uniform in caliber compared to the ASA.
- Frequent inter-communications across the dorsal surface of the cord connect the two PSA's.
- Infrequent intercommunications along the lateral surfaces of the cord between the PSA's and the ASA (circumferential pial arterial plexus).

the posterior spinal axis

posterior arterial network

the posterior spinal axis

posterior arterial network
Courtesy of Philippe Gailloud, MD

Posterior Spinal Artery

Anastamoses Between ASA \& PSA's

intraspinal arterial circulation

Spinal Artery Distribution

Sulco-
commissural a

Courtesy of Philippe Gailloud, MD

Arterial supply
 Ventral

Microangiogram from Nolte

There is one anterior spinal artery

Two posterior spinal arteries

Anterior spinal artery feeds the central cord (arrow)
Dorsal
(Nolte Fig 10-30)

intraspinal arterial circulation

the sulcocomissural arteries

Courtesy of Philippe Gailloud, MD

intraspinal arterial circulation

Spinal Artery Distribution

Sulco-
commissural a

Ant. spinal a

Courtesy of Philippe Gailloud, MD

intraspinal arterial circulation

Courtesy of Philippe Gailloud, MD

Venous Drainage

- Venous blood drains into external vertebral plexus and then internal plexus via basivertebral veins
- Basivertebral plexus has "Y" appearance on axial view
- Cord and vertebral plexi drain via radicular and intervertebral veins through neuroforamina into vertebral vein, ascending lumbar veins, and azygous system

A. rad. magna

Cervical Veins

C

Venous Drainage

Sagittal contrast-enhanced MR angiographic images (T1-weighted gradient-echo sequence [5.9/1.9; flip angle, 30°]) obtained during two dynamic phases.

Nijenhuis R J et al. Radiology 2004;233:541-547

PITFALLS: EPIDURAL VEIN

T1-WI CSE
Contrast T1-WI CSE

PITFALLS: EPIDURAL VEIN

MRI

Normal enhancement

- Vessels of epidural plexus
- Basivertebral venous plexus
- Dorsal root ganglion (DRG)-do not confuse with an enhancing schwannoma

T1-WI
Fat Sat
Contrast Enhanced

Radicular Vein Enhancement

Lane JI, Koeller KK, Atkinson JLD. Contrast-Enhanced Radicular Veins on MR of the Lumbar Spine in an Asymptomatic Study Group. AJNR Am J Neuroradiol 16:269-273, February 1995.

SUMMARY: Contents

Bones
Joints
Ligaments
Muscles/tendons
Spinal Canal: Epidural/Intradural
Neural Canals/Neuroforamina
Neural Elements
Vascular Anatomy

Lateral

The axis "ring"
Intervertebral disc (IVD)
Facet joint parallelism Interspinous distance
Atlanto-dental interval <3mm Prevertebral ST
$-\mathrm{C} 2<7 \mathrm{~mm},<5 \mathrm{~mm}$ (peds)
$-\mathrm{C} 6<22 \mathrm{~mm}$

- At C4-C7 < 3/4 Vert Body

Essential to evaluate to the C7-T1 level (Swimmers view)

Lateral

THE FIVE LINES

- Anterior prevertebral soft tissues
- Anterior vertebral body line
- Posterior vertebral body line
- Spinolaminar line
- Spinous process line

The Axis Ring

Anterior arc = junction cortex C2 body and pedicle
Upper arc = junction dens and body
Posterior arc = posterior cortex C2 body
Inferior apex = transverse process C2

Oblique View

Neuroforaminal
Encroachment
Contralateral pedicle
Vertebral body morphology
Laminae appear as "shingles on a roof"
Trauma Obliques
- supine imaging \rightarrow can appear distorted

AP View

Visualizes C3 to upper thoracic VB
Alignment of the spinous processes

- Bifid may not align

Smooth alignment of the lateral margins of the articular masses
Uncovertebral joints
VB morphology

AP Odontoid View

Atlantooccipital joint Atlantoaxial joint Odontoid morphology Odontoid process position
Alignment of C1 lateral masses \& C2
Rotation/head tilt narrowing occurs on side opposite of head movement

Courtesy of Tim Maus, MD

C1 - C2 Lateral Articulation Related Neural \&

Courtesy of Tim Maus, MD

MR Imaging Protocol: C-spine

- Sagittal T1-weighted SE
- Sagittal T2-weighted FSE
- STIR/Fat-Suppressed T2-weighted
- Axial T2* gradient-echo
- Axial T2-weighted FSE

Typical Cervical Exam

-Sagittal T1 \& FSE T2 -Axial FSE T2 \& GRE T2

Khanna AJ, ed. MRI for Orthopaedic Surgeons. 2210

Courtesy of Krishna Juluru

ACR Imaging Protocol

Field Strength
Coil
Pulse Sequences

- Sagittal
- T1 CSE
- T2 FSE (fat suppression)
- Axial \rightarrow oblique parallel to IVD
- T2 FSE
- T1 CSE

Typical Lumbar Exam

-T1, FSE T2 sagittal and axial images -Axial images aligned to interspace

Khanna AJ, ed. MRI for Orthopaedic Surgeons. 2010

Khanna AJ, ed. MRI for Orthopaedic Surgeons. 2010

Thank You

