Clinical Anatomy and Imaging of the Spine

John A. Carrino, M.D., M.P.H. Vice Chairman Department of Radiology and Imaging, Hospital for Special Surgery Professor of Radiology, Weill Cornell Medical College 535 East 70th Street 3E-012 New York, NY 10021 Email: CarrinoJ@HSS.EDU

Spinal Column

Anatomy

 Series of vertebrae, ligaments, and articulations

Function

- Flexible support structure for thorax, abdomen, and cranium
- Protection for cord and nerve roots

Contents

Bones Joints Ligaments Muscles/tendons Spinal Canal: Epidural/Intradural Neural Canals/Neuroforamina Neural Elements Vascular Anatomy

Imaging techniques

- Radiography
- Myelography
- CT
- MRI

Radiography

- Bony (osseous) structures
- Soft tissue
- Used to assess:
 - Alignment
 - Morphology
 - Osseous destruction

Myelography – Rad Fluoro

- Central canal, neural foramen, nerve roots, caliber of cord.
- Used for:
 - Canal narrowing.
 - Foraminal narrowing.
 - Nerve root pathology (mass, arachnoiditis)

Myelography – CT

- Bony structures, like CT
- Implants/Hardware
- Central canal, neural foramen, nerve roots, caliber of cord
- Used for:
 - Canal narrowing
 - Foraminal narrowing
 - Intradural lesion if MRI contra-indicated

CT

- Bony structures, including neural foramen, central canal
- Soft tissue
 - Disc
 - Thecal sac (limited)
- Used to assess:
 - Fracture
 - Malalignment
 - Some soft tissue abnormalities

MRI

- Soft tissues spinal cord, nerve roots, paraspinal soft tissue
- Bone for marrow abnormalities
- Used to assess:
 - Degenerative changes
 - Trauma
 - Infection
 - Neoplasm

Courtesy of Anna Nidecker and Ari Blitz

MR imaging primer

T1 WI

- fluid dark
- fat bright unless fat sat (used with contrast)

T2 WI

- fluid bright
- fat bright unless fat sat (looks similar to STIR)

STIR

- fluid sensitive (bright) & rest dark
- PD : high SNR
 - Fluid somewhat bright
 - fat bright unless fat sat

PD-TSE (Intermediate Weighted)

PD : high SNR Fluid somewhat bright fat bright unless fat sat

T1-WI

Signal Intensity

Muscle
 → gray/intermediate all PS

Fat → bright T1

Water
 → dark T1, bright T2

Contents

Bones Joints Ligaments Muscles/tendons Spinal Canal: Epidural/Intradural Neural Canals/Neuroforamina Neural Elements Vascular Anatomy

Occiput (C0), Atlas (C1), Axis (C2)

Occipital condyles
Atlas

Lateral masses
Stabilizing ligaments
Rotational motion

Axis

Dens
Body
Articular pillars

Skull Base

Chamberlain's Line: Posterior hard palate to opisthion Tip of dens is at or below this line
Wackenhein Clivus Base Line: Posterior margin of dens is tangent to, but not above this line Smoker Radiographics 1994

Atlanto-Occipital Assimilation

Failure of Segmentation b/w Skull and C1

 Typically Associated with Basilar Invagination

Characteristic commashaped appearance of basion

Atlas

lacks a body
two lateral masses
short anterior arch
longer posterior arch

Grooves for vertebral Artery
Foramen transversarium in transverse process

Henry Gray (1821–1865). Anatomy of the Human Body. 1918.

Incomplete Fusion C1 Posterior Arch

Incomplete Fusion Posterior Arch C1

Axis

•Dens axis Attachments of alar ligaments •Groove for transverse ligament Facet for anterior arch of atlas •Foramen transversarium in transverse process

Henry Gray (1821–1865). Anatomy of the Human Body. 1918.

C1 Occipitilization

Atlas (C1), Axis (C2)

Vertebral body anatomy: CT

- Atlas and axis (C1 and C2)
- Unique vertebral bodies
- C1 has no spinous process or body
- C2 has a superior extension called the dens, or odontoid

Vertebral body anatomy: CT

- Coronal: Axis and Atlas
 - Occipital condyle
 - Atlanto-occipital joint
 - C1 lateral mass
 - C1 transverse process
 - Dens/odontoid
 - Atlanto-axial joint
 - C2 vertebral body
 - Neural foramen

Vertebral body anatomy: CT

- Axial: Axis and Atlas
- Atlantooccipital joint
- Occipital condyle
- C1
 - Anterior arch
 - Lateral mass
 - Transverse process
 - Transverse foramen
 - Posterior arch
- C2
 - Dens/odontoid
 - Body
 - Pedicle, lamina, spinous process

Os Odontoideum

Anterior Arch Hyperplasia allows for Differentiation from Type II Odontoid Fracture

Associations:

Down Syndrome,
 SED, Morquio's,
 Klippel-Feil

Normal Variant: Os odontodium with pseudarthrosis and DJD

Chondrification centers

Ossification centers

Primary ossification centers

1 for each vertebral arch (7th or 8th week)

Henry Gray (1821–1865). Anatomy of the Human Body. 1918.

Secondary ossification centers

Longitudinal growth

Sub-Axial Spine

Cervical Vertebrae (C3-7)

- •Small but relatively broad bodies
- •Large triangular vertebral foramen
- •Raised lip on upper surface of body
- •Ant. and post. tubercle of transverse process
- Foramen transversarium (C7 no vertebral artery !)
 Short bifid spinous processes

Vertebral body anatomy: Radiography

- Lateral:
 - Atlas
 - Axis (dens)
 - Vertebral bodies (Cervical)
 - Vertebral bodies (Thoracic)
 - Disc spaces
 - Facet joints
 - Spinous processes
 - Transverse process

Courtesy of Anna Nidecker and Ari Blitz

Cervical Vertebrae (C3-7)

Uncinate process

- Osseous projection off of the superolateral aspect of the vertebral body
- Articulates with beveled inferolateral aspect of the supradjacent vertebral body to form the uncovertebral joint

Uncovertebral joint(Joint of Luschka)

- Unique to the cervical spine
- Part of the disc, not a synovial joint
- Frequent location of degeneration

Sub-Axial Cervical Spine: Uncinate Processess

Developmental Variants: C-spine

Subdental synchondrosis Accessory ossicle of C1 arch

Ununited C1 apophysis
 Incomplete fusion C1 arch

anterior

posterior

Occipitalization of C1 (Cervical occipital fusion)

C1 lateral masses fuse with occipital condyles
 Congenital block vertebrae
 Bifid spinous process

Congenital Block Vertebrae

Bifid Spinous Process

Congenital Pedicle Absence

Lumbar Vertebrae

 Large bodies Most often triangular foramen Transverse processes thin and long Superior articular facets often concave Inferior articular facets often convex •5th. lumbar vertebra has largest body which is markedly deeper in front

Khanna AJ, ed. MRI for Orthopaedic Surgeons. 2010.

Vertebral body anatomy: Radiography

• AP:

- Pedicles
- Spinous process
- Transverse processes
- Vertebral body
- Disc space

Vertebral body anatomy: CT

- Axial (thoracic spine)
- Vertebral body components:
 - Body
 - Pedicles
 - Transverse processes
 - Laminae
 - Spinous process
 - Facet joints
 - Central canal
 - Neural foramen

Vertebral body anatomy: CT

- Sagittal (t and I spine)
- Vertebral components
 - Bodies
 - Thoracic (T12)
 - Lumbar (L1-L5)
 - Sacrum
 - Discs
 - Spinous process
 - Facet joint
 - Central canal
 - Neural foramen

Courtesy of Anna Nidecker and Ari Blitz

Vertebral body anatomy: CT

- Coronal (t and I spine)
- Vertebral components
 - Thoracic
 - Body, disc
 - Costovertebral joint
 - Costotransverse joint
 - Lumbar
 - Superior and Inferior articular facets
 - Facet joint
 - Pedicles
 - Spinous processes
 - Sacrum, Ilium, SI joint

Ring Apophyses: MRI

Need MRI

Limbus Vertebra

Limbus vertebrae

MARROW: Normal MR Imaging

- Red (Hematopoietic)
 - T1 = muscle (except in neonates)
 - T2 > muscle & <fat</p>
- Yellow (Fatty)
 - short T1 & long T2
 - isointense to sub-Q fat (< T2)

SI reflects composition

T1-WI

T2-WI

Lumbar Spi "Scotty Dog

Lumbar Spi Anatomy

- block of bone at base of vertebral column
- Support spine →
 transmit load
- Triangular shape
 (broad cephalad →
 tapers)
- •Foramina (anterior and posterior)

 Fusion of S1-5, the largest vertebral element

Соссух

Fusion of four
 rudimentary vertebrae

Largest vertebral element (5 fused vertebrae) Sacral Alae (SA) Lateral Mass (LM) Sacral Hiatus (SH) Where spine meets the pelvis (SI Joint)

"Holy bone" (hieron osteon)

- •"Holy bone"
 - hieron osteon
- •Largest vertebral element (5 fused vertebrae)
- Sacral Alae (SA)
- Lateral Mass (LM)
- •Sacral Hiatus (SH)
- •Where spine meets the pelvis (SI Joint)

Vertebral Enumeration

Background

There is relative paucity of information about the frequency and spectrum of vertebral level variants in the current published literature

Variant spinal segment anatomy has several important clinical implications

- Accurate localization of vertebral segments is essential prior to surgery or intervention
- Important for communication between health providers
- Variant anatomy may explain clinical symptoms

Thoracolumbar Spine Variability

- 1. Non-typical distribution of segments (homeotic variations)
- 2. Anomalous total number of vertebrae (meristic variations)
- 3. Transitional Situation
 - ThoracoLumbar Transitional Vertebrae (TLTV)
 - LumboSacral transitional vertebrae (LSTV)

Transitional Situations

A transitional vertebra retains partial features of the segment above and the segment below

Wigh RE. The thoracolumbar and lumbosacral transitional junctions. Spine (Phila Pa 1976). 1980 May-Jun;5(3):215-222.

Spinal Column

C-spine shows morphological stasis (n=7)

T and L spine are variable Total number of vertebrae above the sacrum (presacral)

-23 -24 -25

Kier EL. Some Developmental and Evolutionary Aspects of the Lumbosacral Spine. In Brain Anatomy and Magnetic Resonance Imaging; Gouaze A, Salamon G, eds. Springer-Verlag: Berlin Heidelberg, 1988.

Narita, Y., and Kuratani, S. Evolution of the vertebral formulae in mammals: a perspective on developmental constraints. J. Exp. Zool. (Mol. Dev. Evol.) 2005; 304B: 91–106.

--Midline automated spine survey iterative scan technique (ASSIST) localizer images show variant vertebral anatomy

Results

Subjects- 300

- 171 males, 129 females
- Age mean 30 years
- Age range 18-45 years

Total presacral* segment distributions-

- 23 in 2.3% (7/300)
- 24 in 91.7% (275/300)
- 25 in 6% (18/300)

*Presacral = total number of vertebral segments above the sacrum

Results

Segmental vertebral distributions-

- \circ C7/T12/L4 = 0.3% (1/300)
- \circ C7/T12/L5 = 89.7% (269/300)
- \circ C7/T12/L6 = 3.7% (11/300)
- \circ C7/T13/L4 = 2.3% (7/300)
- \circ C7/T11/L5 = 0.3% (1/300)
- \circ C7/T11/L6 =0.7% (2/300)
- \circ C7/T13/L5 = 2.7% (8/300)
- \circ C7/T13/L6 = 0.3% (1/300)

Virgules (/, slashes) denote different segments

Cervical Rib

Criteria to identify the presence of a cervical rib:

- The rib must abut the 7th cervical vertebral transverse process
- The rib must have no connection with the manubrium sterni, although it may form a synostosis with the 1st rib
- The cervical rib must be separate from, but articulate with the transverse process of C7

Brewin J, Hill M, Ellis H. The prevalence of cervical ribs in a London population. Clin Anat. 2009 Apr;22(3):331-6.

Cervical Rib

Figure : Coronal CT image of cervical spine shows a cervical rib on the right side

Figure: Axial CT image of cervical spine shows a cervical rib on the right, articulating with the transverse process of C7

Cervical Rih Variant

TOC: conviced rib fibrous band

Lower Trunk C8 root enlarged

Thoracolumbar Transitional Vertebra

- Anomalous lowest rib bearing segment
- Consists of a diminutive or short rib on at least one or both side
- Short rib was defined as a rib with length of 38 mm or less

Wigh RE. The thoracolumbar and lumbosacral transitional junctions. Spine (Phila Pa 1976). 1980 May-Jun;5(3):215-222.

Thoraco-lumbar junction

Thoracolumbar Transitional vertebra

Axial (a), oblique sagittal (b), 3D (c) CT images of thoracolumbar junction shows a transitional verterbra with short ribs on both sides

Thoraco-lumbar junction

TLTV

LumboSacral Transitional Vertebra (LSTV)

Presence of an enlarged transverse process on one or both sides of the last lumbar vertebra

Classified as per Castellvi's classification (Castellvi et al, 1985)

LSTV - Dermatomes

Patients with LSTV have dermatomal variation and alteration in function of the lumbosacral nerve roots, which manifests as poor correlation with clinical symptoms and may result in wrong level of percutaneous injection procedures

Seyfert S. Dermatome variations in patients with transitional vertebrae. J Neurol Neurosurg Psychiatry. 1997 Dec;63(6):801-803. Kim YH, Lee PB, Lee CJ, Lee SC, Kim YC, Huh J. Dermatome variation of lumbosacral nerve roots in patients with transitional lumbosacral vertebrae. Anesth Analg. 2008 Apr;106(4):1279-1283.

Castellvi Classification of LSTV

Type I	Dysplastic transverse process	Unilateral (a) or bilateral (b) large triangular transverse process, at least 19 mm wide
Type II	Incomplete lumbarisation / sacralisation	Enlarged transverse process with unilateral (a) or bilateral (b) pseudarthrosis with the adjacent sacral ala
Type III	Complete lumbarisation / sacralisation	Enlarged transverse process, with unilateral (a) or bilateral (b) com- plete fusion with the adjacent sacral ala
Type IV	Mixed	Type IIa on one side and type IIIa on the other

Lumbosacral Transitional Vertebra- Classification

Type I- Dysplatic transverse perocess:

- Large transverse process triangular in shape measuring at least 19 mm in width
- Type Ia- Unilateral; Type Ib- Bilateral

Castellvi Classification of LSTV

Lumbosacral Transitional Vertebra- Type Ia

Figure- Oblique coronal CT image of lumbosacral junction shows a transitional verterbra with enlarged tranverse process on the right side

Lumbosacral Transitional Vertebra- Type Ih

Figure – Coronal CT image of lumbosacral junction shows a transitional verterbra with enlarged transfer process on both sides

Lumbosacral Transitional Vertebra- Classification

Type II- *Incomplete Iumbarization/sacralization*

- Large transverse process appears to follow the contour of the sacral ala
- Appears like a diarthrodial joint between the transverse process and the sacrum
- Type IIa- Unilateral; Type IIb- Bilateral

Castellvi Classification of LSTV

Lumbosacral Transitional Vertebra- Type IIa

Figure - Coronal CT image of lumbosacral junction shows a transitional verterbra with diarthrodial joint appearance on the right side.

Lumbosacral Transitional Vertebra- Type IIh

Figure - Coronal CT image of lumbosacral junction shows a transitional verterbra with diarthrodial joint appearance on both sides.

<u>j</u>

PELVIS WACONTRAST.CT (Palvis: Bone 3.0 MPR) SarkesNa: 1000 (9) Siloa Sof S #0 Kay Image

R

Key Image

Lumbosacral Transitional Vertebra- Classification

Type III- *Complete lumbarization/ sacralization*

- Similar to Type II
- Instead of diarthrodial joint, there is osseous fusion between the transverse process and the sacrum
- Type IIIa- Unilateral; Type IIIb- Bilateral

Castellvi Classification of LSTV

Lumbosacral Transitional Vertebra- Type IIIa

Figure - Coronal CT image of lumbosacral junction shows a transitional verterbra with fusion on left side

Lumbosacral Transitional Vertebra- Type IIIb

Figure - Coronal CT image of lumbosacral junction shows a transitional verterbra with fusion on both sides

Lumbosacral Transitional Vertebra- Classification

Type IV- Mixed

• Type II on one side and Type III on the other.

Castellvi Classification of LSTV

Lumbosacral Transitional Vertebra- Type IV

Figure - Coronal CT image of lumbosacral junction shows a transitional verterbra with fusion on left and a diarthrodial looking joint on the right side

Transitional Segments Bertolotti's Syndrome

Transitional segment

Type of Transitional Verterba

Pain Physician. 2006;9:53-56, ISSN 1533-3159

A PROSPECTIVE OBSERVATIONAL REPORT

LUMBOSACRAL TRANSITIONAL VERTEBRAE: INCIDENCE IN A CONSECUTIVE PATIENT SERIES

Elva G. Delport, MD, Tony R. Cucuzzella, MD, Nancy Kim, MD, Julie Marley, PT, Dip MDT, Christine Pruitt, RN, MS, and Anton G. Delport, PT, Dip MDT

Results

Prevalence of Lumbosacral Transitional Vertebral Types

TYPE	Perce	entage	Number
Type Ia	4.3		13/300
Type Ib	2.3		7/300
Type IIa	6		18/300
Type IIb	9.7		29/300
Type IIIa	1		3/300
Type IIIb	4		12/300
Type IV	2		6/300
	Total n=	88/300	

LSTV Identification on MRI

features described for identifying LSTV on lateral projection/sagittal imaging

- "squared" appearance vertebral body morphology
- decreased intervertebral disc height at the lumbosacral junction
- S1-2 intervertebral disc morphology

Wigh RE. The thoracolumbar and lumbosacral transitional junctions. Spine (Phila Pa 1976). 1980 May-Jun;5(3):215-222.

Nicholson AA, Roberts GM, Williams LA. The measured height of the lumbosacral disc in patients with and without transitional vertebrae. *Br J Radiol* 1988;61: 454–455.

O'Driscoll CM, Irwin A, Saifuddin A. Variations in morphology of the lumbosacral junction on sagittal MRI: correlation with plain radiography. *Skeletal Radiol* 1996;25: 225–230.

Identification of LSTV by IVD morphology

O'Driscoll Type 1

- No disc material between S1 & remainder of sacrum (non-LSTV)

O'Driscoll Type 2

Small residual disc between S1 and remainder of sacrum, AP diameter of disc being less than AP diameter of sacrum

O'Driscoll Type 3

Well-formed residual disc between S1 & remainder of sacrum, AP diameter of disc equaling the AP diameter of sacrum

O'Driscoll Type 4

- Well-formed residual disc with abnormal "squaring" of presumed upper sacral segment on lateral view

O'Driscoll Classification of first sacral IVD (S1-2)

LSTV and vertebral Numbering Imaging classification systems for LSTV do not provide insight into accurate labeling information for the vertebral level

If a LSTV is present, this should be stated along with its characterization including where the lowest, well-formed intervertebral disc is. This landmark can be identified at fluoroscopy during surgical or percutaneous procedures

Reported Landmarks for Vertebral Labeling from L-spine MR Spinal cord Vascular

- conus medullaris Lee CH, Seo BK, Choi YC, Shin HJ, Park JH, Jeon HJ, Kim KA, Park CM, Kim BH. Using MRI to evaluate anatomic significance of aortic bifurcation, right renal artery, and conus medullaris when locating lumbar vertebral segments. AJR Am J Roentgenol. 2004 May;182(5):1295-1300.

Musculoskeletal

- iliolumbar ligament

Hughes RJ, Saifuddin A. Numbering of lumbosacral transitional vertebrae on MRI: role of the iliolumbar ligaments. AJR 2006;187(1):W59-65.

- aortic bifurcation
- right renal artery
- inferior vena cava confluence
- celiac trunk
- superior mesenteric

Chithriki M, Jappit er Steele CD The anatomical relationship of the aortic bifurcation to the lumbar vertebrae: a MRI study. Surg Radiol Anat. 2002 Dec;24(5):308-312.

Lee CH, Park CM, Kim KA, Hong SJ, Seol HY, Kim BH, Kim JH. Identification and prediction of transitional vertebrae on imaging studies: anatomical significance of paraspinal structures. Clin Anat. 2007 Nov;20(8):905-14.

Reported Landmarks for Vertebral Labeling from L-spine MR Spinal cord Vascular confounded by the assumption of 12 thoracic vertebrae

Hughes RJ, Saifuddin A. Numbering of lumbosacral transitional vertebrae on MRI: role of the iliolumbar ligaments. AJR 2006;187(1):W59-65.

Radiol Anat. 2002 Dec;24(5):308-312.

Lee CH, Park CM, Kim KA, Hong SJ, Seol HY, Kim BH, Kim JH. Identification and prediction of transitional vertebrae on imaging studies: anatomical significance of paraspinal structures. Clin Anat. 2007 Nov;20(8):905-14.

Clinical Relevance

Substantial variability of spine segmental anatomy may confound spine imaging interpretation

Hindrance in ascribing correct vertebral levels

Deviation from the typical total and segmental distribution is not infrequent and transitional situations are common

Knowing the prevalence will provide better insight to clinicians

Courtesy of Tim Maus, M.D. 71 M Right leg pain

71 M Right leg pain

71 Maus, M.D. 71 M Right leg pain

12 Thoracic rib-bearing vertebrae, 5 lumbar vertebrae above a transitional segment The 25th segmental nerve, classically supplying the S1 radicular distribution, exits under the transitional segment pedicle

71 M Right leg pain

A safe triangle supra-neural TFE was performed, targeting the nerve exiting under the transitional segment pedicle, which is compressed in the lateral recess – he left the department pain free

43 F, left leg pain

43 F, left leg pain

- •
- •

Courtesy of Tim Maus, M.D. 27 M, Left Leg Pain

27 M, Left Leg Pain

Courtesy of Tim Maus, M.D.

Courte 27 M, Left Leg Pain

Courtesy of Tim Maus, M.D.

37, M S1 Radicular Pai

37, Male Left buttock, posterior thigh, posterior calf pain Paresthesias on planter aspect of foot Contrary to imaging recommendations, plain films were not obtained MRI shows? How can this be resolved with the patient's pain pattern? Where should an injection be performed ?

37, M S1 Radicular Pain

MRI scout view:

- 25 vertebral segments

Fluoro observation:

- 7 cervical
- 12 rib bearing thoracic
- 6 lumbar

Neural elements do not change

Bony structures may change about them

Here the S1 radicular distribution is innervated by the nerve exiting under the L6 / transitional segment pedicle

Courtesy of Tim Maus, M.D.

37, M S1 Radicular Pain

65, FRight Leg Pain

6 lumbar vertebrae

Courtesy of Tim Maus, M.D. 65, F Right Leg Pain

5, F Right Leg Pain

Courtesy of Tim Maus, M.D.

65, F Right Leg Pain

Courtesy of Tim Maus, M.D. 71, F Right Hip Pain

- •
- •

Courtesy of Tim Maus, M.D. 71, F Right Hip Pain

Courtesy of Tim Maus, M.D. 71, F Right Hip Pain

Schemes of Numbering Lumbar Vertebrae

Count from top using whole spine localizer

Use lumbosacral angle to discern transition point

Identify iliolumbar ligament arising from last lumbar vertebrae

llioLumbar Ligament (ILL)

Summary

Because of phylogenetic variation the ILL does not always denote the level of L5 but rather simply identifies the lowest lumbar type vertebral segment.

LSTV are associated with anomalous number of presacral segments but TLTV are not

The presence of a TLTV is associated with a higher incidence of concomitant LSTV, and

VICE VERSA Carrino et al. The Effect of Spinal Segment Variants on Numbering Vertebral Levels Using Lumbar MRI. Radiology 2011. Contents

Bones Joints Ligaments Muscles/tendons Spinal Canal: Epidural/Intradural Neural Canals/Neuroforamina Neural Elements Vascular Anatomy

Joints of upper C-spine

Atlanto-occipital joint: occipital condyles and lateral atlantal mass.

Lateral atlanto-axial joint (lateral masses of atlas and sup. articular surface of axis)

Median atlanto-axial joint (dens and anterior arch of atlas and transv. ligament.

Joints of Upper Cervical Spine

Atlanto-occipital joint: occipital condyles and lateral atlantal mass.
Lateral atlanto-axial joint: lateral mass, atlas and articular pillar, axis
Median atlanto-axial joint: dens and anterior arch of atlas, transverse ligament.

Joints of Upper Cervical Spine

Lateral view upper cervical spine

"Open mouth" Odontoid view

Roche CJ, King SJ, Dangerfield PH, Carty HM. The atlanto-axial joint: physiological range of rotation on MRI and CT. Clin Radiol. 2002 Feb;57(2):103-8.

C1-C2 Injection

Spinal Organization: Subaxial

- C2 to sacrum: organized in a similar pattern with three types of joints
- 1. Intervertebral discs (fibrocartilaginous symphyses) between vertebrae
- 2. *Facet jt (zygapophysial jt)* between sup and inf articular processes, a synovial joint
- 3. Fibrous joints include ligamentum flava, interspinous ligaments, and supraspinous ligaments

Systematic Nomenclature

"DISC"

"FACET"

Anterior intervertebral joint Intervertebral amphiarthroses (intervertebral symphyses) Inter-body joint

Posterior intervertebral joint Intervertebral diarthroses

Zygoapohysial joints

Intervertebral Discs

Found from the axis to the sacrum - Different characteristics Immensely strong fibrocartilaginous structures which are strongest bonds between adjacent vertebrae. Outer anulus fibrosis and inner nucleus pulposus **Concentric lamellae**

INTERVERTEBRAL DISC

Anterior or posterior longitudinal ligaments Periosteofascial tissue Intrinsic fibers of the anulus fibrosis Deep core of fibrocartilagnous material

Mercer S. The Ligaments and Anulus Fibrosis of Human Adult Cervical Intervertebral Discs. Spine 1999;24:619.

Cervical Intervertebral Discs

Anulus fibrosus is much thicker anteriorly with crescentic mass of collagen (No ring of fibers surrounding the nucleus pulposus)

Anulus fibrosus essentially deficient posterolaterally Mercer S. The Ligaments and Anulus Fibrosis of Human Adult Cervical Intervertebral Discs. Spine 1999;24:619.

C-spine Biomechanics

C-spine discography: approach

Simplified approach to discography: Two triangles and a box

Vibhu Kapoor, MD; William E. Rothfus, MD; Stephen Z. Grahovac, MD

uncoveretebral joint opacification

C-spine discography

Sub-Axial Cervical Spine: Uncinate Processess

Intervertebral Discs

Normal discs are hyperintense on T2 (predominately the nucleus pulposus) With advancing age the water content of the nucleus pulposus decreases, manifested as decreased T2 signal in the disc

Lumbar Intervertebral Disc: component structures

Nucleus Pulposus Anulus Fibrosus Cartilagenous Endplate

Lumbar intervertebral Discs

- Disc height gradually increases inferiorly except at L5-S1
- Posterior margin concave in upper lumbosacral spine
- Post. margin straight or convex at L4-5 and L5-S1
- Post. margin projects no more than 1 mm beyond end plate

Intervertebral Discs: clefts

T1-WI CSE

T2-WI FSE

Normal Variant: Schmorls Node

T1-WI SE

Facet Joints

articulation of the inferior articular process of the posterior elements of a vertebra with the superior articular process of the posterior elements of the next vertebra synovial type joint

- capsule,
- synovium
- reciprocating surfaces lined by hyaline (articular) cartilage
- menisci

Facet Joints

Zygapophysial joint (z-joint)

- more appropriate term
- "facet" actually only represents the articular cartilage surface of the joint

Z-Joint Anatomy: Orientation

Oriented differently throughout spine due to varying biomechanical stress

Lumbar
→ Sagittal/Oblique

Cervical → Transverse/Oblique Thoracic → Coronal Lumbar → Sagittal/Oblique

Cervical Z-joints

Cervical Zygapophyseal Joints

Lumbar Z-joints

Z-Joint Tropism

Sacroiliac Joint

Small range of motion
No muscle that execute active movements
Passive movements
"Stress relieving"

SI Joint: Biomechanics

Axes of movement passes obliquely across pelvis

Flexion: axis passes backwards from pubic symphysis to sciatic notch

Extension: axis passes from pubic symphysis through pelvis between ischium and coccyx

complex movements

SI Joint: MR

SI Joint: MR

SI Joint: Age Changes

- Embryo: strip of mesenchyme → cavitation
- 1st decade: joint enlarges but surface flat
- 2nd decade: corrugation of joint surfaces
- 5th and 6th decade: osteophytes
- 8th decade: large interdigitating osteophytes

Bones Joints Ligaments Muscles/tendons Spinal Canal: Epidural/Intradural Neural Canals/Neuroforamina Neural Elements Vascular Anatomy

Ligamentous Structures of Skull Base

Fig. 2.65 Posteroanterior (A) and sagittal (B) illustrations showing the ligamentous structures of the skull base and cervical spine, including the alar ligament, cruciform ligament, and atlantooccipital ligaments.

Ligaments of upper C-spine

Membrana tectoria Alar ligaments Transverse ligament Apical ligament of dens

Transverse Ligament

Normal

Table 1

Reference	Instrument	Tot AR	R: AR	Lt AR	Tot LB	Rt LB	Lt LB	Tot FE	Fix	Ext	Age Ranget	п
Active RoM studies	NAMES OF A DESCRIPTION OF	45544			1.000					101.00		
Newell ⁴⁵ ‡	Visual estimation	169	84	85	1.07	54	53	146	73	73	[18, 40]	48 16 10
Sharpe ⁴³ E		. 99									Not given	16
Kaufman ¹²		138			77			300			[24, 45]	10
Ferlic ¹⁸		140			71			124			[25, 44]	199
Bennett ⁷		151	76	75							[18, 24]	50
Buck ⁶	Two-arm goniometry	147	73	74							[18, 23]	199 50 100
Rosen ⁶⁰ ‡	200000000000000000000000000000000000000	140			133			76	43	33	[20, 40]	- 15
Guth ²² #E		162	81	81							Dec 2	80
Lind ³⁵	Compass	142									[12, 79]	70
Youdas ⁷¹ #		136	70	66							Dec 3-5	125
Bennett ⁷								148	54	93	[18, 24]	50
Alerente ² ‡[150	75	75	76	38	38	122	-705	1550	[35-54]	125
Buck ⁵ ‡			1.5.5.1	08.50				144	67	77	[18, 23]	100
Glanville ²¹ #		157	77	80	82	39	43	121	60	61	[20, 40]	10
Fisher ¹⁸	Single inclinometry	500	1221				1992	134		1000	Dec 3	10
Kuhlman ³⁴ ‡		186	93	93	98	49	49	140	69	71	Dec 3	15 80 70 125 100 10 10 10 10 10 10 10 10 10 10 10 10
Mayer*1‡		174	88	86		1.00		0.000	1000	0.00	YG	5.0
0'Drisco# ⁵⁸		133			194			116			Dec 3-5	60
Ordway ⁵⁴ ‡		100						127	48	79	30 [20, 49]	20
Bosen ⁵⁰ ‡		166			108			150	69	81	[20, 40]	15
Youdas"1#		100			85	44	41	3,00	00	75*	Dec 3-5	125
Mayer ⁴¹ ‡	Dual inclinometry				85	44	41	120	50	70	YG	20
Ordway ⁶⁴ #	shar encountery				- 00			106	38	68	30 [20, 49]	20
Trott ⁶⁴ 1	Electromagnetic	145	76	69	86	-44	42	118	51	67	Dec 3-5	20
Walmsley ^{#7}	Electromagneoc	149	10	03	00		42	110	Sr.	07	[18, 30]	130
Alund		153			91			140			32 [24, 58]	10
Dvorak ¹⁵	Potentiometry	175			91			141			[23, 35]	10
Sandler ⁶¹	rotemponeury	179			84			139			[27, 32]	12
Fisher ¹		110			- 0+			109	46	63	Dec 3	10
Askin [®] ‡§								113	50	63	28 [21, 33]	20
Lind ³⁹	Radiography:				122			129	- 24	00	[12, 79]	5 10 20 70
Linu I	Occiput to C7				124			140			112, 101	1.00
VanMam ⁸⁸	occupie to cr							116			YG	110
Sharpe ^{#3} ¶5#					35			48	45	50	Not given	10 16 20 44 20 26
Ordway ⁵⁴ ‡								107	35	72	30 [20, 49]	10
Penning ⁵⁶ §¶					80			145	30	12	30 (20, 46) YG	20
Johnson ³⁰ §	C0 to T1				ou.			137	69	68	26 [20, 36]	20
Lai ³⁵ ‡	3-D: C0-C7	98	49	49				1.34	99	90	28 [27, 40]	20
Penning ^{sc} 1§**	CT: CD-T1	145	71	74							Dec 3	- 20
Passive RoM studies	P.12 (2011)	140	14	14							- D6C 9	20
McClure ⁴⁴		143									27 [23, 35]	- 50
Nilsson ⁵²	Contraction of the second	169									Dec 3-5	20 < 90
McClure ⁴⁴	Compass	109				47*						- 20
Glanville ²¹ ‡	Ottomate instruments	102	97	95	102	61	65	3057	59* 76	77	27 [23, 35]	20 10 < 90
Glanville* 4 Nilsson ⁵²	Single inclinometry	192	36	90	126	01	00	153	70	n	[20, 40]	10
Dvorak ¹⁵		175						120			Dec 3-5	- 30
McClure ⁴⁴	Recently and the second	1/5			96	200		145	000		Dec 3-5	108
Sandler ⁸²	Potentiometry	155			102	39*		141	60*		27 [23, 35]	20
Sanoter		190			FUZ			151			[27, 32]	

of Mating (0) Using California France Limited & Description

One study did not measure Lt LB and Fix half-cycles; thus, the half-cycle values were excluded from the descriptive statistics.

Mean and/or [range]. Range for decades is inclusive. When possible, we selected data for all subpopulations within the age range of 20 to 50 years. Total RoM values were derived by summing mean half-cycle values.

Radiographic measurements were summed from segmental RoM values.

Wolters Kluwer

Data excluded from Table 2 because the age range was beyond our criterion of 20 to 50 years or subsets of data were not provided For lateral bending, n = 5

The large discrepancy between total FE and the respective half-cycles is likely due to their measurement method.

This study only measured AR to either the right or left in each subject.

Rt = right, Lt = left, Fix = flexion, Ext = extension, Tot = total; AR = axial rotation, LB = lateral bending; FE = flexion-extension; n = number of subjects per tudy: CO = occiput; CT = computerized tomography: Dec = decade; YG = younger group. Vore: For some studies, not all motions were investigated. As a result, many cells are empty.

OvidSP

Meta-Analysis of Normative Cervical Motion.

Chen, Jasper; Solinger, Alan; Poncet, Jacques; Lantz, Charles; DC, PhD

Spine. 24(15):1571, August 1, 1999.

Table 1. Active and Passive Normative Range of Motion ([degrees]) Using Subjects From a Limited Age Range of \f20 to \f50 Years Old* One study did not measure Lt LB and Flx half-cycles; thus, the half-cycle values were excluded from the descriptive statistics.+ Mean and/or [range]. Range for decades is inclusive. When possible, we selected data for all subpopulations within the age range of 20 to 50 years.++ Total RoM values were derived by summing mean half-cycle values.[S] Radiographic measurements were summed from segmental RoM values.[//] Data excluded from Table 2 because the age range was beyond our criterion of 20 to 50 years or subsets of data were not provided.[P] For lateral bending, n = 5# The large discrepancy between total FE and the respective half-cycles is likely due to their measurement method.** This study only measured AR to either the right or left in each subject.Rt = right; Lt = left; Flx = flexion; Ext = extension; Tot = total; AR = axial rotation; LB = lateral bending; FE = flexion-extension; n = number of subjects per study; CO = occiput; CT = computerized tomography; Dec = decade; YG = younger group.Note: For some studies, not all motions were investigated. As a result, many cells are empty.

Table 2

Table 2. Overall Means (°) and Standard Deviations (SD°) Derived From Table 1 and Organized by Technology

		Rotation			Lateral Bending			Flexion-Extension		
RoM Studies	n§	Total	Right	Left	Total	Right	Left	Total	Flexion	Extension
Active normative RoM studies										
Visual estimation	3	149 (17)	84	85	85(18)	54	53	119 (21)	73	73
Two-arm goniometry	3	146 (6)	75 (2)	75(1)	133			76	43	73 33
Compass	1	136	70	66						
Single inclinometry1	9	171 (12)	86 (8)	86 (7)	93 (12)	44 (5)	44 (4)	138(11)	61 (9)	77 (11)
Dual inclinometry	1	S George		6.33M	85	44	41	121	51	70
Electromagnetic	3	147 (3)	76	69	86	44	42	112 (8)	45 (9)	68(1)
Potentiometry	2	177 (3)			88 (5)			140(1)		0.000
Radiography	8	122 (33)	60	62 (18)	80			121 (16)	50 (14)	67 (4)
			(16)							
Overall mean (SD) for technologies*	25)	151 (23)	73 (11)	71 (11)	86 (5)	44 (0)	42 (2)	126 (12)	52 (7)	71 (5)
Largest difference between technologies‡		55	26	24	78	10	12	64	30	44
Passive normative RoM studies										
Compass	2	156 (18)								
Single inclinometry	2	192	97	95	118 (12)	61	65	137 (23)	76	77
Potentiometry	3	173 (18)			99 (4)			143 (3)		
Overall mean for technologies	61	174 (18)			109 (13)			140 (4)		

* Visual estimation and two-arm goniometry were excluded because of validity issues. Inclusion of these technologies would give the following total, right/flexion and left/extension. RolM means and (standard deviations) for rotation: 150° (19%, 75° (10%), 74° (10°); lateral bending: 93° (18°), 47° (5°), 45° (5°); and flexion-extension: 119° (21°), 54°, (11°), 65° (15°).

t Data from O'Discoll et al⁶² was excluded because data collection did not appear to isolate cervical spine motion. Overall single inclinometry means for total active RoM would be 163° for AR, 113° for LB, and 135° for FE, if their data were included.

Standard deviation based on estimates of RoM within each category

3 Number of studies reporting RoM by technology.

Wolters Kluwer

OvidSP

(Total number of studies from Table 1 to create Table 2, Some studies report on more than one technology so this number is less than the total of the numbers in the column above.

RoM = range of motion.

Meta-Analysis of Normative Cervical Motion.

Chen, Jasper; Solinger, Alan; Poncet, Jacques; Lantz, Charles; DC, PhD

Spine. 24(15):1571, August 1, 1999.

Table 2. Overall Means ([degrees]) and Standard Deviations (SD[degrees]) Derived From Table 1 and Organized by Technology* Visual estimation and twoarm goniometry were excluded because of validity issues. Inclusion of these technologies would give the following total, right/flexion and left/extension RoM means and (standard deviations) for rotation: 150[degrees] (19[degrees]), 75[degrees] (10[degrees]), 74[degrees] (10[degrees]); lateral bending: 93[degrees] (18[degrees]), 47[degrees] (5[degrees]), 45[degrees] (5[degrees]); and flexion-extension: 119[degrees] (21[degrees]), 54[degrees], (11[degrees]), 65[degrees] (16[degrees]).+ Data from O'Driscoll et al 53 was excluded because data collection did not appear to isolate cervical spine motion. Overall single inclinometry means for total active RoM would be 163[degrees] for AR, 113[degrees] for LB, and 135[degrees] for FE, if their data were included.++ Standard deviation based on estimates of RoM within each category.[S] Number of studies reporting RoM by technology.[//] Total number of studies from Table 1 to create Table 2; Some studies report on more than one technology so this number is less than the total of the numbers in the column above.RoM = range of motion.

Ligaments of upper C-spine

Ligaments of Upper Cervical Spine

Membrana tectoria
Alar ligaments
Transverse ligament
Apical ligament of dens

Anterior Longitudinal Ligament

From ant. margin of foramen magnum to S1. Strongly adherent to margins of vertebral bones and loosely attached to discs. Deep fibers span one intervertebral articulation, superf. fibers span up to 4 articulations. Narrow in C-spine and broad at L-spine. Low signal on MRI blends with peripheral portion of annulus fibrosus and cortical bone.

Ant. longitud. Ligament

Posterior Longitudinal Ligament

In anterior portion of the vertebral canal From the body of the axis to the sacrum

- Attached to intervertebral discs and margins of adjacent vertebral bodies. No attachment at center of vertebral bodies (basivertebral vein !)
- Superficial fibers bridge 3-4 bodies, deep fibers extend between adjacent vertebra.
- Low signal on T1 and T2 weighted images.

Posterior longitudinal Ligament

Ligamenta flava

- Connect laminae of adjacent vertebrae Blend with capsules of facet joints Thickness: cervical (1.5mm), lumbar (4-
 - 6mm).
- Heterogeneous signal may be due to outpouchings of facet joint capsules (Radiology 177:415-420)
- May calcify and lead to a bony spur in the neural foramen (Radiology 160:153-154) !

Ligamenta flava

Contents

Bones Joints Ligaments Muscles/tendons Spinal Canal: Epidural/Intradural Neural Canals/Neuroforamina Neural Elements Vascular Anatomy

Paraspinal Muscles

Multifidus

MRI Cervical Spine (T2*, GRE)

MRI Cervical Spine (FSE)

MRI Cervical Spine (FSE)

Contents

Bones Joints Ligaments Muscles/tendons **Spinal Canal: Epidural/Intradural** Neural Canals/Neuroforamina Neural Elements Vascular Anatomy

Meninges/Spaces

- Meninges
 - Dura one layer, tubular prolongations through foramen
 - Arachnoid loosely attached to dura, although potential space (subdural) between them exists
 - Pia adherent to surface of cord
- Spaces
 - Epidural: between dura and surrounding bony canal, contains fat, connective tissue, veins, lymphatics
 - Subdural: potential space between dura and arachnoid iatrogenically demonstrated
 - Subarachnoid: between arachnoid and pia, contains CSF, vessels, nerves fium terminale

Epidural Space

Between dura and bone Contents: epidural fat, nerves, blood vessels, ligg. flava, post. long. ligament. At L5/S1 level the dural sac enlarges and usually no epidural fat is seen at MRI. Dura extends caudally to S2 and has lat. out-pouchings to nerve roots.

Cervical Epidural Space

Cervical epidural fat.

- Not much of it.
- Most constant is a posterior fat pad.
- Usually most prominent at C7/T1.

That's how I see it Charles Aprill

Axial section through C5/6 disc / prepared by We

Epidural fat pad

Axial CT section through C5/6 disc – post myele Ie subarachnoid and vascular enhancement.

Epidural fat – low density

SE T2 MRI - Axial section through C5/6 d

10

SE T1 MRI – Mid line sagittal section

Epidural fat pad at C7/T1

Epidural Space

Central canal anatomy: MR Thecal sac

- Meninges
- Epidural space
 - Fat, loose connective tissue, venous plexi
- (Subdural space)
- Subarachnoid space
 - CSF, spinal arteries and veins
 - Spinal cord
 - Nerves, filum terminale

Courtesy of Anna Nidecker and Ari Blitz

Central canal anatomy: MR Thecal sac

- Dura
- Dural nerve root sleeve
- Epidural space with fluid (abnormal)
- Subarachnoid space CSF (compressed)
- Spinal cord
- Nerve roots
 - Ventral
 - Dorsal
- Neural foramen

Central canal anatomy: CT Myelography - Thecal sac

- Epidural space
- Meninges
 - Dura
 - Arachnoid
 - Pia
- (Subdural space)
- Subarachnoid space
 CSF
- Spinal cord

Intradural Space

Neural Foramina and Nerve Roots: Myelography

• AP

- Nerve roots (cauda equina in lumbar spine)
- Pedicles
- Disc spaces

Neural Foramina and Nerve Roots: Myelography

- Oblique
 - Nerve roots
 - Pedicles
 - Neural foramen

MRI Myelography

Tarlov Cysts

LEVELS

In the caudocranial direction visualized on sagittal and coronal images, we have chosen the term **levels**.

Contents

Bones Joints Ligaments Muscles/tendons Spinal Canal: Epidural/Intradural **Neural Canals/Neuroforamina Neural Elements** Vascular Anatomy

Ebraheim: Neuroforamen

Anatomy of cervical Neuroforamen

Sagittal Oblique

The shape of the intervertebral foramina approximated a funnel, the entrance zone being the most narrow part and the root sleeves conical, with their takeoff points from the central dural sac being the largest part.

Zones of the cervical neural canal

Pedicle C5

Pedicle

Shoulder C4

в

D

No Contact **C7**

Tanaka N. The Anatomic Relation Among the Nerve Roots, Intervertebral Discs of the Cervical Spine. Spine 2000;25:286-291.

C5

C6

C5

C6

C7

C8

Neural Foramina and Nerve Roots: CT Myelography

Nerve root anatomy: CT Myelography

- Coronal (anterior)
 - Ventral rootlets
 - CSF
 - Facet joints
 - Atlas
 - Axis w/dens

Nerve root anatomy: CT Myelography

- Coronal (mid/post)
 - Spinal cord
 - Dorsal rootlets
 - CSF
 - Facet joints
 - Atlanto-occipital joint

Nerve root anatomy: CT Myelography

- Sagittal
 - Spinal cord
 - -CSF
 - Rootlets
 - Neural foramen
 - Nerve roots

Nerve root anatomy: MR

- Axial
 - Spinal cord
 - Dorsal roots
 - Ventral roots
 - Nerve root sleeve
 - Neural foramen
 - Dorsal root ganglion

Nerve root anatomy: MR

- Sagittal
 - Rootlets
 - Ventral, dorsal
 - Roots
 - Ventral, dorsal
 - Dural sleeve
 - Neural foramen
 - DRG

Normal Anatomy: Rootlets, Roots

- 1- Ventral rootlet
- 2- Dorsal rootlet
- 3- Rootlets (dorsal)
 - (Aka filum pl. fila)
- 4- Root
- 5- Dorsal root ganglion
- 6- Spinal nerve

DRG, Nerve, Rami

- V- Vertebral artery
- 1- Dorsal root ganglion
- 2- Spinal nerve
- 3- Dorsal Ramus, proximal
- 4- Lateral Ramus, adjacent to facet
- 5- Ventral Ramus

Dermatomes (Nolte fig. 10-4)

Copyright © 2009 by Mosby, an imprint of Elsevier, Inc. All rights reserved.

CERVICAL TRANSFORAMINAL ACCESS

•Consecutive images through C4-5 foramen

•Consider Carotid, Vertebral arteries, Brachial plexus, exiting root

•Arterial contributors to Anterior Spinal Artery entering foramen from ascending or deep cervical cannot be imaged

Anatomy Neuroforamen

Neuroforamen (Neural Canal)

Borders

- Anterior: vertebral bodies and disc
- Posterior: facet joint and articular processes
- Superior and Inferior: pedicles

T1 sequence

 See low SI nerve passing below pedicle surrounded by high SI fat

Nerve Roots, Neural Foramen

- CT Myelogram, MRI
- Ventral and dorsal rootlets
- Ventral and dorsal roots as they enter the neural foramen

Contents

Bones Joints Ligaments Muscles/tendons Spinal Canal: Epidural/Intradural Neural Canals/Neuroforamina **Neural Elements** Vascular Anatomy

Neural Structures

8 cervical nerve roots exit above the similarly numbered vertebral body 12 thoracic and 5 lumbar nerve roots exit below the similarly numbered vertebrae

Nerve roots pass laterally out through NF

Dorsal root ganglion located within NF

Normal conus medullaris ends around the level of inferior endplate of L1 in adults

Central Canal Anatomy: MR Spinal Cord

- In cervical and thoracic spine
- Cord tapers to a diamond shaped point (conus medullaris)
- Conus typically ends between T12-L2
- Below this are the cauda equina ("horses tail" of lumbar, sacral, coccygeal nerve roots)
- Filum terminale a strand of connective tissue extending inferiorly from the conus

Cross sectional spine anatomy

(Modified from Nolle J: The human brain, ed 5, St. Louis, 2002, Mosby.)

(Nolte Atlas Fig 02-01)

Central canal anatomy: MR Spinal Cord

- In contrast to brain, gray matter is inside while white matter is outside
- Gray matter is formed by columns ("horns") of cell bodies:
 - Ventral horn short, thick, multipolar motor neurons
 - Dorsal horn narrow, receives sensory axons from DRG

Central canal anatomy: MR Spinal Cord

- Three white matter columns (funiculi):
 - Dorsal, ventral, lateral
- Descending motor, ascending sensory tracts mostly lateral, ventral funiculi
- Position, discriminative touch in dorsal funiculi

Spinal Cord

- CT myelogram, MRI
- Ends between T12 and L2, most commonly L1-L2
- Conus is distal-most aspect, diamond shaped, which is attached to lower dura via thin fibrous band (filum terminale)
- Cauda equina nerve roots below conus
- Gray matter, white matter
- CT Myelogram, MRI
- Ventral and dorsal rootlets
- Ventral and dorsal roots as they enter the neural foramen
- Artery of Adamkiewicz

Evaluation of the brachial plexus

Fig. 2.—A, Photograph of dissected specimen shows right stellate ganglion in situ retracted anteriorly by a forceps. First rib has been transected and lateral portion removed.

B, Drawing shows structures seen in A.

Stellate Ganglion

Bruzzi, J. F. et al. Radiographics 2008;28:551-560

Cervical Sympathetic Block Stellate Ganglion

Cervical Sympathetic Block Stellate Ganglion

Cervical Sympathetic Block

Medial Branch Localization

S.M. LORD Ph.D, 1996, University of Newcastle

Medial Branch Localization

Centrode of articular pillar

Waist of articular pillar

Recession

T2-WI FSE

Central Canal Anatomy: MR Spinal Cord

- The conus most commonly terminates at or just above L1-2
- Below this are the cauda equina nerve roots

PITFALLS: CONJOINED NERVE ROOT SLEEVE

T1-WI SE

T2-WI FSE

Innervation of Ventral Aspect Of Spinal Column

Courtesy of J. Randy Jinkins, MD

Somatic Innervation: Sinuvertebral Nerve of Luschka [Recurrent Meningeal Nerve]

Courtesy of J. Randy Jinkins, MD

Innervation of Dorsal Aspect Of Spinal Column: I

Courtesy of J. Randy Jinkins, MD

Innervation of Dorsal Aspect Of Spinal Column: II

Spinous Process, Interspinous Ligament, Supraspinous Ligament

Intrinsic Spinal Muscles: Interspinalis + Multifidus Ms.

Courtesy of J. Randy Jinkins, MD

Medial Branch: Dorsal Ramus Contents

Bones Joints Ligaments Muscles/tendons Spinal Canal: Epidural/Intradural Neural Canals/Neuroforamina Neural Elements Vascular Anatomy

A. cervicalis profunda A. cervicalis ascendens A. vertebralis

A. subclavia

Aa. intercostales posteriores

A. radicularis (anterior) magna Aa. lumbales Aa. sacrales laterales

Tillmann, 2004

T:11monn 2004

The Vert

 The paired vertebral arteries arise from the subclavian artery •They ascend through the transverse processes of the upper 6 cervical vertebrae Pass behind the lateral mass of C1 and enter the dura *behind* the occipital condyle Ascend through the

foramen magnum and join

to form the **basilar artery**

Vertebral Artery:

Vertebral artery: foramen transversarium, anterior neural foramen Lateral to C1-C2 joint, pierces dura above C1 arch

Cervical Vasculature

2D time-of-flight sequence

Vascular Supply to the Spinal Cord

Section courtesy of Adam Flanders, MD

Arterial Supply

Arterial supply to the spine through the radicular arteries Not at all levels Largest arises in the thoracic region- the artery of Adamkiewicz

(Nolte Fig 10-29)

Arterial Supply

- Anterior spinal artery and two posterior spinal arteries originate from vertebral arteries and supply the superior cord
- Spinal radicular arteries arise from vertebral, deep cervical, posterior intercostal, lumbar, and lateral sacral arteries
- Radicular arteries enter through neuroforamina and divide into anterior and posterior branches to supply vertebrae, meninges, and cord

Arterial supply

Sagittal contrast-enhanced MR angiographic images (T1-weighted gradient-echo sequence [5.9/1.9; flip angle, 30°]) obtained during two dynamic phases.

Nijenhuis R J et al. Radiology 2004;233:541-547

Arterial Supply

Spinal angiography

radicular artery

Spinal angiography

radicular artery

radiculomeningeal or radiculomedullary arteries

Vascular Anatomy of the Spinal Cord

Anterior Spinal ArteryPosterior Spinal Arteries(ASA)(PSA) → paired

nomenclature

Anterior Spinal Artery

•Three major regions of supply to the ASA

- Cervicothoracic
- Mid-thoracic
- Thoraco-lumbar

Borderzone (watershed) areas occur at the margins of each region.
Adequate collateral flow is not always available across borderzone areas.

•Spinal cord is vulnerable to infarction in the event of systemic hypotension or compromise of a major radiculomedullary feeding vessel.

Major Radiculomedullary Arteries

- C3 arises from vertebral artery.
- C6 (artery of cervical enlargement), arises from thyrocervical or costocervical trunk.
- T4 or T5 arises from intercostal artery.
- T8 to conus artery of lumbar enlargement (Adamkiewicz) aka. Arteria radicularis anterior magna.
 - Arises from an intercostal or lumbar artery.
 - "Hairpin-loop" configuration due to differential growth of spinal and spinal cord.

Contributors to Anterior Spinal Artery

Multiple vertebral contributors

Vertebral branch

Thyro-cervical trunk

functional adaptation

artery of the cervical enlargement

Thyro-cervical trunk contributes to ASA via left C6 foramen

Coronal multiplanar reformations from contrast-enhanced T1-weighted gradient-echo MR images (5.9/1.9; flip angle, 30°)

Nijenhuis R J et al. Radiology 2004;233:541-547

Yoshioka K et al. Radiographics 2006;26:S63-S73

functional adaptation

artery of the lumbar enlargement artery of Adamkiewicz

Arterv of Adamkiewicz

000

functional adaptation

artery of the lumbar enlargement artery of Adamkiewicz

Posterior Spinal Arteries

- Smaller and more uniform in caliber compared to the ASA.
- Frequent inter-communications across the dorsal surface of the cord connect the two PSA's.
- Infrequent intercommunications along the lateral surfaces of the cord between the PSA's and the ASA (circumferential pial arterial plexus).

the posterior spinal axis

posterior arterial network

the posterior spinal axis

posterior arterial network

Posterior Spinal Artery

Anastamoses Between ASA & PSA's

Arterial supply

Ventral

Microangiogram from Nolte

There is one anterior spinal artery

Two posterior spinal arteries

Anterior spinal artery feeds the central cord (arrow)

Dorsal

(Nolte Fig 10-30)

the sulcocomissural arteries

Venous Drainage

- Venous blood drains into external vertebral plexus and then internal plexus via basivertebral veins
- Basivertebral plexus has "Y" appearance on axial view
- Cord and vertebral plexi drain via radicular and intervertebral veins through neuroforamina into vertebral vein, ascending lumbar veins, and azygous system

A. rad. magna

Cervical Veins

Venous Drainage

Sagittal contrast-enhanced MR angiographic images (T1-weighted gradient-echo sequence [5.9/1.9; flip angle, 30°]) obtained during two dynamic phases.

Nijenhuis R J et al. Radiology 2004;233:541-547

PITFALLS: EPIDURAL VEIN

T1-WI CSE

Contrast T1-WI CSE

PITFALLS: EPIDURAL VEIN

MRI

Normal enhancement

- Vessels of epidural plexus
- Basivertebral venous plexus
- Dorsal root ganglion (DRG)-do not confuse with an enhancing schwannoma

T1-WI Fat Sat Contrast Enhanced

Radicular Vein Enhancement

Lane JI, Koeller KK, Atkinson JLD. Contrast-Enhanced Radicular Veins on MR of the Lumbar Spine in an Asymptomatic Study Group. *AJNR Am J Neuroradiol* 16:269–273, February 1995.

SUMMARY: Contents

Bones Joints Ligaments Muscles/tendons Spinal Canal: Epidural/Intradural **Neural Canals/Neuroforamina Neural Elements** Vascular Anatomy

Lateral

The axis "ring" Intervertebral disc (IVD) Facet joint parallelism Interspinous distance Atlanto-dental interval <3mm Prevertebral ST

- C2 < 7mm, <5mm(peds)
- -C6 < 22mm
- At C4-C7 $< \frac{3}{4}$ Vert Body

Essential to evaluate to the C7-T1 level (Swimmers view)

Lateral

THE FIVE LINES

- Anterior prevertebral soft tissues
- Anterior vertebral body line
- Posterior vertebral body line
- Spinolaminar line
- Spinous process line

The Axis Ring

Anterior arc = junction cortex C2 body and pedicle Upper arc = junction dens and body Posterior arc = posterior cortex C2 body Inferior apex = transverse process C2

Oblique View

Neuroforaminal Encroachment Contralateral pedicle Vertebral body morphology Laminae appear as "shingles on a roof" **Trauma Obliques** - supine imaging \rightarrow can appear distorted

AP View

Visualizes C3 to upper thoracic VB Alignment of the spinous processes - Bifid may not align Smooth alignment of the lateral margins of the articular masses **Uncovertebral** joints VB morphology

AP Odontoid View

Atlantooccipital joint Atlantoaxial joint Odontoid morphology **Odontoid process** position Alignment of C1 lateral masses & C2 Rotation/head tilt narrowing occurs on side opposite of head movement

C1 - C2 Lateral Articulation Related Neural & Vascular Elements

Courtesy of Tim Maus, MD

C1 - C2 Lateral Articulation Related Neural &

Courtesy of Tim Maus, MD

MR Imaging Protocol: C-spine

- Sagittal T1-weighted SE
- Sagittal T2-weighted FSE
- STIR/Fat-Suppressed T2-weighted
- Axial T2* gradient-echo
- Axial T2-weighted FSE

Typical Cervical Exam

Sagittal T1 & FSE T2Axial FSE T2 & GRE T2

Khanna AJ, ed. MRI for Orthopaedic Surgeons. 2010

Courtesy of Krishna Juluru

ACR Imaging Protocol

- Field Strength
- Coil
- Pulse Sequences
 - Sagittal
 - T1 CSE
 - T2 FSE (fat suppression)
 - Axial → oblique parallel to IVD
 - T2 FSE
 - T1 CSE

Typical Lumbar Exam

•T1, FSE T2 sagittal and axial images•Axial images aligned to interspace

Khanna AJ, ed. MRI for Orthopaedic Surgeons. 2010

Thank You